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a b s t r a c t 

Between 2001 and 2010 significant progress was made towards reducing the number of malaria cases in 

Peru; however, the country saw an increase between 2011 and 2015. This work attempts to uncover the 

associations among various climatic and environmental variables and the annual malaria parasite inci- 

dence in the Peruvian region of Loreto. A Multilevel Mixed-effects Poisson Regression model is employed, 

focusing on the 2009–2013 period, when trends in malaria incidence shifted from decreasing to increas- 

ing. The results indicate that variations in elevation ( β = 0.78; 95% confidence interval (CI), 0.75–0.81), 

soil moisture ( β = 0.0021; 95% CI, 0.0019–0.0022), rainfall ( β = 0.59; 95% CI, 0.56–0.61), and normalized 

difference vegetation index ( β = 2.13; 95% CI, 1.83–2.43) is associated with higher annual parasite inci- 

dence, whereas an increase in temperature ( β = -0.0 043; 95% CI, − 0.0 044- − 0.0 041) is associated with a 

lower annual parasite incidence. The results from this study are particularly useful for healthcare workers 

in Loreto and have the potential of being integrated within malaria elimination plans. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Malaria continues to be one of the most severe public health

roblems worldwide. According to the World Health Organization

 WHO, 2015 ), 1.2 billion people are at a high risk of being infected

ith malaria and developing the disease and 214 million cases

ere reported in 2015. The majority of the cases occurred in Africa

nd South-East Asia, but transmission continues in several parts of

outh America as well ( WHO, 2015 ). In 2012, approximately 25% of

he malaria burden in South America was experienced by 12 mu-

icipalities in Peru, Brazil, and Venezuela ( Zaitchik et al., 2012 ). 

Peru is making progress towards controlling malaria but has

ot been able to completely eliminate the disease, thus making it

he country with the second highest number of malaria cases in

outh America ( Bautista et al., 2006; WHO, 2015 ). In 2015, Peru

ad an estimated population of 30,973,148, of which 12,165,089

ad at least some risk of contracting malaria ( WHO, 2015 ). Dur-

ng the 1990s, there was a 7-fold increase in malaria incidence in

eru, rising from 13 per 10,0 0 0 inhabitants in 1990 to a peak of 88

er 10,0 0 0 in 1996 ( Roper et al., 20 0 0 ). Specifically, over 60% of all

alaria cases occurred in the Loreto Department of Peru ( Zaitchik

t al., 2012 ). As a result, the Loreto has been the major focus of
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he malaria control. In 1990, there were only 641 cases in Loreto,

ut the number rose to 121,268 cases by 1997 ( Roper et al., 20 0 0 ).

eru saw an overall decline in malaria cases from 2001–2010, but

he number of cases has increased since then, especially in Loreto.

n 2015, there were nearly 3 times as many malaria cases as were

eported in 2011. 

Peru has implemented a number of initiatives in an effort to

ontrol malaria. The Peruvian Malaria Program provides free an-

imalarial drugs under a Directly Observed Therapy (DOT) pro-

ocol ( Chuquiyauri et al., 2012 ). In addition, regional effort s to

mprove malaria surveillance, early detection, prompt treatment,

nd vector management have been employed since 20 0 0 ( Herrera

t al., 2012 ). From 2006 to 2011, Peru participated in the PA-

AFRO project, a malaria control program in which long last-

ng insecticide-impregnated nets (LLIN) were delivered to remote

ommunities in Loreto. Based on the most recent project report

 PAMAFRO, 2010 ), most of the LLINs were distributed during the

rst years of the project (prior to 2009). Despite these effort s and

ncreased funding for malaria control in the region, there are still

aps in understanding how different factors impact malaria trans-

ission and elimination ( Herrera et al., 2012 ). This brings into

uestion the role of climate and environmental factors. 

In Peru, the two main Anopheles species responsible for

alaria transmission are the An. darlingi (along the Amazon

asin) and An. pseudopunctipennis (along the Peruvian north coast)

https://doi.org/10.1016/j.advwatres.2016.11.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2016.11.009&domain=pdf
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( Sinka et al., 2012 ) The seasonality patterns of the mosquito are

closely related to the rainfall cycle, mainly due to rainfall increas-

ing the availability of breeding sites leading to peak abundances

of An. darlingi reported in the rainy season ( Reinbold-Wasson et

al., 2012 ). The larvae also require stable conditions in the breed-

ing sites and prefer large water bodies such as rivers. Additionally,

the mosquitoes prefer certain amount of vegetation coverage and

temperatures ranging from 20 to 28 °C ( Hiwat and Bretas, 2011 ).

The changing temperature trends can impact the time needed for

parasite development, mosquito abundance, gonotrophic cycle, and

larval development ( Patz and Olson, 2006 ). Past studies clearly in-

dicate that global climate variability already has and will continue

to have an impact on malaria transmission. Specifically, climatic

variations and extreme weather events have been shown to have

a profound impact on infectious agents and their associated vec-

tor organisms ( Parham and Michael, 2010; Patz et al., 2005 ). These

two studies also showed that vectors such as mosquitoes are de-

void of thermostatic mechanisms, so their reproduction and sur-

vival rates are strongly impacted by fluctuations in temperature.

Parham and Michaels (2010) showed that environmental variables

such as temperature, humidity, rainfall, and wind speed can affect

the incidence of malaria by impacting the changes in the duration

of the parasite’s life cycle and parasite behavior. 

Githeko and Ndegwa (2001) focused on the East African High-

lands and argued that the underlying cause of the malaria epi-

demic is due to the changing climatic conditions in this normally

cool area. An increase in temperature has been shown to accelerate

the rate of mosquito larval development and the frequency of bites

on humans, as well as impacting the time it takes for the malaria

parasite to mature into the mosquito stage. Increases in rainfall can

create additional habitats for mosquitoes to breed, thus increasing

vector populations. Githeko and Ndegwa (2001) concluded that in

the past decade there has been an increase in the anomalies of

mean monthly temperatures, which has a strong relationship with

the number of malaria cases. 

Few past studies have attempted to identify the relationship

between climate variables and malaria risk in Peru. Jones et al.,

(2004) proposed that environmental factors are responsible for

changes in the mosquito population over time. This study focused

on a region in Loreto, where a higher overall mosquito popula-

tion was observed from October 1996 through March 1997, which

corresponds to the rainy season ( Jones et al., 2004 ). Aramburú et

al. (1999) found a positive correlation between malaria transmis-

sion periods and rainfall and higher temperatures near the Ama-

zon River. Additionally, Aramburú et al. (1999) showed that the

two precipitation peaks in 1997 occurred three months and one

month before the malaria cases reached their highest levels in

Loreto. These studies focused on the Loreto region but failed to

take into account a long time series of climate and environmen-

tal data, which is critical to observe temporal trends. 

This research goes one step further, by investigating how re-

mote sensing and modeling products can be used to analyze trends

in the annual parasite incidence by expanding on these past stud-

ies to include a longer time series, a larger study area (i.e., the

whole Loreto Department), by examining a more complete set of

environmental variables, and by quantifying the relationship be-

tween malaria and climate/environmental conditions. Field obser-

vations in the region are limited, as the Loreto department com-

prises nearly one-fourth of the landmass of Peru and has a low

population density ( Aramburú et al., 1999 ), making it difficult to

conduct field collections of environmental data. Hence, remote

sensing and modeling techniques are extremely valuable to ob-

tain the necessary information of the current environmental and

climate conditions of the region and to investigate the impacts of

those factors on malaria transmission. In this study, we focus on

analyzing the association between the annual parasite incidence
t 315 health centers located in Loreto and environmental and at-

ospheric variables, such as temperature, humidity, soil moisture,

egetation coverage, and elevation. All of the variables are entered

nto a Multivariate Poisson Regression Model to study the depen-

ence of the annual parasite incidence on these environmental

onditions and identify which regions of the department are suit-

ble for malaria transmission. Results from this study can be ap-

lied to surveillance effort s and to direct elimination strategies in

igher risk regions. 

. Study area and datasets 

.1. Study area 

Loreto is one of the 25 departments in Peru, located in the

ortheast region of the country ( Fig. 1 a). Loreto comprises one

ourth of Peru’s land area and has a total area of approximately

48,177 km 

2 ( Griffing et al., 2013; Vittor et al., 2006 ). The region

ies in the Amazon rainforest basin and has ecological character-

stics of the Amazon lowlands ( Aramburú et al., 1999 ). The region

s characterized by two distinct wet and dry seasons, with the wet

eason going from November to May, although precipitation occurs

ear around. Loreto’s annual average temperature is 28 °C and the

egion has a persistent, high relative humidity of more than 87%

ear around ( Aramburú et al., 1999 ). 

The Loreto region only has one major paved road with small-

npaved roads connecting villages within the region capital, the

ity of Iquitos. However, in practice, most of the movement in this

egion happens along the river networks ( Abizaid, 2005; GOREL,

0 06; Kvist and Nebel, 20 01 ). As a result, a majority of the pop-

lation resides in close approximation of the river ( Fig. 1 ). In this

egion, the Peruvian Ministry of Health has placed more than 400

ealth centers, but only 315 are used as surveillance reporting

nits. The health centers in Loreto are nested in 8 health net-

orks or redes de salud (redes, hereinafter), which are based on

he boundaries of the provinces in the region. Fig. 1 b-f displays

aps of the health center locations, the rivers, and the boundaries

f the redes. These maps show the distribution of the health cen-

ers within each of the networks (i.e., redes). Some redes have sev-

ral health centers clustered in one area, while the health centers

re more dispersed in other regions. 

.2. Malaria data 

The malaria data used for this study are obtained from the

oreto Ministry of Health for the 2009–2013 time period. The

ataset includes yearly case counts for both Plasmodium falciparum

nd Plasmodium vivax cases at each of the 315 health centers.

he two species differ morphologically, immunologically, in their

eographical distribution, and in their relapse and drug response

 Tuteja, 2007 ). Data on the estimated population at each health

enter are used to determine the annual parasite incidence (API),

s defined in Eq. (1 ): 

PI = 

((
numb er of repo rted cases duri ng a time peri od 

popu lati on duri ng time peri od 

)
∗ 10 0 0 

)

(1)

The population estimates per health center are obtained from

he Loreto’s Ministry of Health for the year 2009. For 2010–2013,

opulation estimates are calculated based on linear interpolation

rom the 2009 population assigned to each health center and the

otal population estimates of the department for each year. Fig. 1 b-

, which presents the API for all health centers from 2009 to 2013,

hows the geographic variability in incidence rates throughout the
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Fig. 1. (a) Location of Loreto and (b-f) Annual Malaria Parasite Incidence per Health Center for 2009–2013 with an insert map for the densely populated area. 
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Fig. 2. Weekly time series plots for weekly malaria cases and (a) mean weekly precipitation, (b) mean weekly humidity, (c) mean weekly soil moisture, (d) mean weekly 

temperature, (e) mean weekly normalized difference vegetation index (NDVI), and (f) mean weekly enhanced vegetation index (EVI) for the whole Loreto Department. 
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redes. As depicted in the figure, more health centers had malaria

incidence greater than 400 cases per 10 0 0 people in 2013 than in

previous years. 

The total weekly malaria case count for the whole department

is extracted for 2009–2013 from the Loreto Ministry of Health’s

weekly health bulletins. The results of the weekly malaria counts

are presented in Fig. 2. 

2.3. Climate and environmental variables 

Several satellite and modeling products are used to study cli-

mate and environmental variables at each health center for 2009–

2013, including outputs from the NASA MERRA (Modern-Era Ret-

rospective analysis for Research And Applications) model, precipi-

tation data from the Tropical Rainfall Measuring Mission (TRMM)

Multisatellite Precipitation Analysis (TMPA), vegetation products

from the moderate-resolution imaging spectroradiometer ( MODIS)

instrument, and elevation data from the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER) Global Ele-

vation Model (GDEM). 

2.3.1. NASA MERRA model 

The MERRA model provides historical time series of the hydro-

logical cycle variables, such as temperature, humidity, and surface

pressure from 1979 to present ( Reichle et al., 2011; Rienecker et

al., 2011 ). MERRA incorporates information from remote sensing

observations of the atmosphere from many modern satellites and

provides estimates of surface meteorological data, e.g., precipita-

tion, radiation, air temperature, and humidity as well as land sur-

face variables, e.g., soil moisture and runoff. Data are available at

hourly steps and at 1/2 °× 2/3 ° spatial resolution in latitude and

longitude. The climate variables obtained from MERRA include spe-

cific humidity at 2 m above the displacement height (QV2M), tem-

perature at 2 m above the displacement height (T2M), and soil

moisture content in the top soil layer (SFMC). 
.3.2. Precipitation data 

Precipitation data are obtained from the TRMM TMPA dataset

 NASA, 2015 ). TMPA provides precipitation estimates by merg-

ng information from multiple satellite sensors and ground-based

auges ( Huffman et al., 2007; Huffman et al., 2010 ). Specifically,

his product combines the rainfall estimates of several passive mi-

rowave sensors (PMW) that are onboard Low Earth Orbit Satellites

nd sensors that are on board platforms of the Defense Meteoro-

ogical Satellite Products (DMSP) and NOAA ( Mantas et al., 2015 ).

MPA estimates are produced by using the PMW rain rates from

ach sensor through the Goddard Profiling algorithm ( Gopalan et

l., 2010; Kummerow et al., 2010 ). TMPA data are available for the

0 °N–S latitude band from 1998–2014 at 3-hourly time steps and

.25 °× 0.25 ° resolution ( Huffman et al., 2007 ). The TMPA rainfall

roducts are available in two versions: a real-time version (TMPA

B42RT) and gauge-adjusted post real-time research version (TMPA

B42). The main difference between the two products is the la-

ency and the use of rain gauge data for bias adjustment ( Melesse,

011 ). For this study, the TMPA 3B42V7 product is selected, be-

ause of its better performance in terms of bias with respect to

he real-time version ( Habib et al., 2009; Maggioni et al., 2016 ). 

.3.3. Vegetation data 

Satellite based vegetation indices are obtained from the global

6-day composite of MODIS vegetation indices that provide spa-

ially and temporally continuous vegetation conditions. The indices

nclude the MODIS normalized difference vegetation index (NDVI)

nd the Enhanced Vegetation Index (EVI), an index that provides a

reater response to variations in canopy structure than NDVI ( Gao

t al., 20 0 0 ). These data are obtained from the MOD13C1 Product

t 0.05 ° resolution. NDVI is defined as follows: 

DVI = 

N − R 

N + R 

(2)
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here, N and R are the reflectance in the near-infrared (NIR) and

ed bands, respectively. EVI is defined as: 

VI = G 

(
N − R 

N + C 1 R − C 2 B + L 

)
(3) 

here, N, R, and B are atmosphere-corrected surface reflectance in

ear-infrared, red, and blue bands. G is a gain factor, C1 and C2

re coefficients of the aerosol resistance term, and L is a canopy

ackground adjustment term. The coefficients used in the MODIS

VI algorithm are, G = 2.5, C1 = 6, C2 = 7.5, and L = 1 ( Huete et al.,

002 ). 

.3.4. Elevation data 

The ASTER GDEM model provides elevation data globally at

0 m resolution. The ASTER instrument was launched onboard

ASA’s Terra Spacecraft and has the capability of using near in-

rared spectral band and nadir-viewing and backward-viewing tele-

copes to acquire stereo image data ( Japan Space Systems, 2011;

ASA, 2016 ). To produce the ASTER DEMs, the ASTER archive data

re processed through an automated method which includes, cloud

asking, stacking all cloud-screened DEMs, removing bad values,

nd averaging selected data to create final pixel values. The ASTER

DEM is available for land surface regions between 83 ° N-S in

 °× 1 ° tiles ( Japan Space Systems, 2011 ). 

.3.5. Time series 

Time series of weekly average precipitation, temperature, hu-

idity, NDVI, EVI and number of malaria cases from 2009–2013

or the entire area are shown in Fig. 2 . Climate and environmen-

al factors are characterized by a strong seasonality in the region,

howing the two main (dry and wet) seasons. Specifically, pre-

ipitation, humidity, and soil moisture start increasing in the last

ew months of the year and the peak occurs in the beginning of

he year, which lines up with the wet season (November–May)

n Loreto. For temperature, NDVI, and EVI, the peak occurs in the

econd half of each year between May and December. The peak

f malaria cases occurs approximately in the middle of each year.

he maximum weekly precipitation, temperature, and humidity av-

rage for the entire time period occur between 2010 and 2011,

hich aligns with the time when malaria cases began to increase.

ppendix A presents additional weekly time series of the param-

ters for 2009–2013. The plots indicate that there is variability in

he climate and environmental variables for the different regions

f the country. 

. Methodology 

.1. Mixed effects poisson regression model 

A multilevel mixed-effects Poisson regression model is used to

tudy the relationship between Annual Parasite Incidence and at-

ospheric/environmental variables. This type of model is a multi-

evel Poisson regression that contains both fixed effects and ran-

om effects. There are many advantages of using a mixed-effect

odel for this type of analysis. First, mixed-effect models can

e applied to continuous and non-normally distributed outcomes

e.g., Poisson distribution). Second, this family of models is robust

hen handling missing data, and a combination of time-invariant

nd time varying covariates ( Gibbons et al., 2010 ). Mixed-effects

odels also allow for modeling the correlation that might exist in

rouped data; therefore, the nesting of the grouped observations

an be treated as random effects within the model ( Buckley et al.,

003 ; Ren et al., 2015 ). 

A Poisson regression model is generally utilized when the re-

ponse variable is a discrete number (n = 0, 1, 2, …, N). The data

vailable for this study can be described by a discrete variable,
hich represents the number of occurrences of malaria cases, i.e.,

he Annual Parasite Incidence. Therefore, the Poisson regression

ethod is considered to be the most appropriate approach. In

omparison to ordinary regression models, this technique has the

onstraint that: 1) predicted values are non-negative numbers, and

) the mean and the variance of the errors are equal to each other.

oreover, the Poisson regression model assumes that the proba-

ility distribution of the response follows a Poisson distribution

 Gardner et al., 1995; Long, 1997 ): 

r ( y ij = y | x i j , u j ) = 

(
exp 

(
−μi j 

) )
μi j 

y 

y! 
(4)

here μij = exp (x ij β +u j ), j = 1, 2, . . ., m clusters (redes), with

luster j consisting of i = 1, 2, …, n j (health centers). The responses

re discrete values y ij (annual parasite incidence) and the row vec-

or x ij corresponds to the covariates for the fixed effects, with the

egression coefficients (fixed effects) β . The random effects are

epresented by u j ( STATA, 2013 ). In this model, the fixed effects

epresent the climate and environmental variables and the random

ffect accounts for the correlation that might exist in the redes. 

The Poisson regression assumes that the logarithm of its ex-

ected value can be modeled by a linear combination of unknown

arameters ( Ahmed, 2014 ). The equation can be written as a gen-

ralized linear function as follows: 

og 
(
μi j 

)
= β0 + β1 x ij . . . + βn x ij + u j (5) 

here β0 is the intercept term, βn are the fixed effect coefficient

alues, and u j is the random effects term. The coefficients can be

xponentiated to determine the incidence rate ratio (IRR), which is

omputed as: 

RR = exp ( βn ) (6) 

IRRs greater than 1 signal a positive relationship between the

xed effect and response variable, while those less than 1 signal

 negative relationship. To indicate the magnitude of the effect a

xed effect has on the response variable, the IRR can be converted

o a percentage value, as follows: 

 RR ( % ) = ( I RR − 1 ) ∗ 100 (7) 

For example, an IRR of 2 yields an IRR(%) equal to 100%, mean-

ng that a 1 unit increase in the fixed effect would result in a 100%

ncrease (doubling) in the response variable. 

.2. Data analysis 

In this study, the mixed-effects model is implemented using

 Multilevel Mixed-effects Poisson Regression in STATA 13. The

odel includes annual parasite incidence at each health center.

he centers are clustered by redes networks to take into consider-

tion the shared, clustered-level random effects. The atmospheric

nd environmental data come in gridded formats, therefore it is

ecessary to determine in which grid cell each of the health cen-

ers is located. To determine the conditions at each health center,

he nearest neighbor value of the atmospheric/environmental data

s used. 

All the climate and environmental variables are transformed

n an attempt to better characterize the conditions throughout

he year. For example, rather than simply considering the average

early temperature, the number of days with temperature above a

ertain degree is considered. Due to the fact that malaria data are

vailable on a yearly scale, numerous transformations for the vari-

bles are considered in an attempt to test a broad range of poten-

ial representations of the environmental conditions. The full list of

ariable transformations is presented in Appendix B . 

Each of the climate and environmental variable transformation

s examined in a univariate analysis to identify the transformation
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Table 1 

Year malaria count and population for the whole department. 

2009 2010 2011 2012 2013 

Malaria count 23 ,486 11 ,445 11 ,779 25 ,148 43 ,737 

Population 766 ,169 766 ,578 775 ,321 784 ,113 792 ,935 

Annual parasite incidence 30 .7 14 .9 15 .2 32 .1 55 .2 

Table 2 

Mean and standard deviation of annual parasite incidence per red network. 

No. of Health Centers 2009 2010 2011 2012 2013 

Mean SD Mean SD Mean SD Mean SD Mean SD 

Alto Amazonas 52 26 .5 41 .8 18 .3 28 .4 18 .7 29 .6 18 .8 45 .2 43 .0 99 .1 

Datem Del Marañon 45 59 .2 107 .6 32 .9 63 .0 33 .5 64 .7 65 .1 143 .7 143 .3 319 .8 

Loreto 27 52 .4 78 .1 21 .3 28 .6 21 .6 29 .2 43 .6 85 .4 80 .4 140 .6 

Maynas ciudad 45 64 .3 141 .4 36 .5 81 .1 36 .5 82 .7 171 .6 525 .5 201 .3 407 .1 

Maynas periferia 57 115 .9 254 .9 51 .7 95 .2 52 .3 96 .4 65 .9 138 .6 131 .2 299 .2 

Ramon castilla 21 58 .8 52 .2 17 .9 16 .1 18 .0 16 .4 60 .1 89 .1 120 .2 208 .2 

Requena 34 23 .1 98 .5 12 .9 53 .1 12 .9 53 .4 28 .2 121 .3 42 .9 152 .1 

Ucayali 34 0 .0 0 .0 0 .03 0 .2 0 .03 0 .2 0 .1 0 .3 0 .8 4 .4 
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that will be included in the multivariate model. The Akaike Infor-

mation Criterion (AIC), which provides a measure of the relative

quality of a model for a set of data, is the chosen metric to select

these transformations. The AIC is defined as: 

AIC = −2 lnL + 2k (8)

where lnL is the maximized log-likelihood of the model and k is

the number of parameters, which in our case is the same for all

the univariate models ( STATA, 2013 ). The AIC quantifies the quality

of the fitness of each univariate model and is therefore used to

compare the univariate models against each other and select the

best variable transformations. Given two models, the one with the

smaller AIC indicates a better-fitting model ( STATA, 2013 ). 

The AIC for each of the various transformations of all variables

is then calculated and, for each variable, the transformation with

the lowest AIC value is included in the multivariate analysis. The

forward selection is used to determine the variables for the mul-

tivariate model ( Adimi et al., 2010; Ayalew et al., 2016; Lachish et

al., 2013 ). In this approach, each variable is added to the model

one at a time, starting with the one that is the most significant

(i.e., lowest AIC) and assessing the effect of adding that variable

on the model AIC value. 

Pearson’s correlation coefficients are also computed for each

variable to avoid multicollinearity. Multicollinearity can inflate the

variance of one of the estimated regression coefficients and pro-

duce untrustworthy model results. A coefficient value greater than

0.5 or less than −0.5 corresponds to a high degree of correlation

between the two variables, so one of the two variables would be

eliminated. The multivariate analysis is applied first to the annual

malaria parasite incidence and then to the two types of malaria ( P.

falciparum and P. vivax ) separately. 

4. Results 

4.1. Sample characteristics 

The total number of malaria cases for Loreto decreased from

2009 to 2010, then began increasing afterward, reaching 43,737

cases in 2013. The yearly number of malaria cases, population, and

annual parasite incidence for the entire department are presented

in Table 1 for 2009–2013. 

Table 2 shows the mean annual parasite incidence for the

health centers in each of the eight redes, as well as the num-

ber of health centers in each. In 2013, Maynas Ciudad, Datem del

Maranon, and Maynas Periferia showed the highest annual para-
ite incidence, whereas Ucayali recorded the lowest average an-

ual parasite incidence among all the redes in 2013. As shown in

ig. 2 , Maynad Ciudad and Maynas Periferia are located closer to

he equator compared to the other redes. Datem del Maranon is

ocated in the western region of the department near the border

ith Ecuador. Ucayali is located at the southernmost part of the

epartment and the furthest away from the Equator compared to

he other redes. 

Another point to note in Table 2 is that the standard deviation

f the annual parasite incidence is higher than the mean, which

ndicates high variability in annual parasite incidences among the

ealth centers in the each of the redes. 

.2. Univariate analysis 

The AIC is used to determine which variable transformation to

se in the multivariate analysis ( Appendix C ). First, the model is

reated for the annual parasite incidence aggregated for species,

. vivax and P. falciparum . According to the univariate analysis, the

ariable transformations with the lowest AIC value, which indicate

 better model fit, are the P2 (cumulative precipitation during the

et season), E2 (the elevation above 100 m), H4 (the number of

ays with humidity above 0.018 kg vapor × kg air 
−1 ), SM4 (the num-

er of days with soil moisture above 0.400 m 

3 /m 

3 ), T9 (the num-

er of days with temperature above 25 °C), and NDVI (the yearly

verage normalized difference vegetation index). 

Next, a univariate analysis is conducted for the P. falciparum and

he P. vivax annual parasite incidence independently to investigate

f the two types of malaria are associated with different climate

nd environmental conditions. For P. falciparum ( Appendix D ) , the

ransformed variables with the lowest AIC value are the same as

hose for the annual parasite incidence with the exception of pre-

ipitation, where P7 (the number of days with rainfall over 15 mm)

ad the lowest AIC number rather than the cumulative precipita-

ion during the wet season. For the P. vivax ( Appendix E ) , the vari-

ble transformations with the lowest AIC values are the same as

hose for the annual parasite incidence. 

.3. Multivariate analysis 

The forward selection is used to determine the variables for the

ultivariate model. The AIC value for each model in the forward

election is presented in Appendix F . Additionally, the correlation

oefficient is calculated for each of the variables to avoid multi-

ollinearity, similarly to the univariate analysis. Table 3 indicates
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Table 3 

Correlation matrix of variables used in the multivariate analy- 

sis for the total and P. vivax-annual parasite incidence model. 

T9 E2 SM4 P2 NDVI 

T9 1 

E2 −0 .075 1 

SM4 −0 .26 -0 .38 1 

P2 −0 .13 0 .0034 0 .12 1 

NDVI 0 .044 0 .44 −0 .32 −0 .024 1 

Table 4 

Multivariate analysis for annual parasite incidence. 

Coefficient Estimate 95% CI IRR–Fixed Effects 

βo −472 .34 −482 .66, -462.03 

βT9 −0 .0043 −0 .0 044, 0.0 041 0 .99 

βE2 0 .78 0 .75, 0.81 2 .18 

βSM4 0 .0021 0 .0 019, 0.0 022 1 .00 

B P2 0 .59 0 .56, 0.61 1 .79 

βNDVI 2 .13 1 .83, 2.43 8 .45 

βyear 0 .24 0 .23, 0.24 1 .26 

Random effects 3 .29 1 .23, 8.83 
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Table 5 

Correlation matrix of variables used in the multivariate analysis 

for the P. falciparum-annual parasite incidence model. 

T9 NDVI E2 SM1 P7 

T9 1 

NDVI 0 .044 1 

E2 -0 .075 0 .44 1 

SM1 −0 .4 −0 .43 −0 .36 1 

P7 −0 .12 0 .0 0 05 −0 .017 0 .12 1 

Table 6 

Multivariate analysis for the P. falciparum-annual parasite incidence. 

Coefficient Estimate 95% CI IRR–Fixed Effects 

βo −612 .94 −639 .12, -586.77 

βT9 −0 .0097 −0 .010, -0.0094 0 .99 

βE2 0 .69 0 .59, 0.76 1 .97 

βSM1 −1 .79 −2 .37, 1.23 0 .166 

B P7 0 .0084 0 .0 069, 0.0 098 1 .008 

βNDVI 9 .14 8 .43, 9.84 9286.17 

βyear 0 .30 0 .29, 0.32 1 .35 

Random effects 3 .80 1 .37, 10.52 

Table 7 

Multivariate analysis for the P. vivax-annual parasite incidence. 

Coefficient Estimate 95% CI IRR–Fixed Effects 

βo −442 .64 −453 .78, −431.49 

βT9 −0 .0030 −0 .0 031, −0.0 028 0 .997 

βE2 0 .81 0 .78, 0.85 2 .254 

βSM4 0 .003 0 .0 029, 0.0 031 1 .003 

βP2 0 .63 0 .60, 0.65 1 .871 

βNDVI 0 .50 0 .16, 0 .83 1 .642 

βyear 0 .22 0 .22, 0.23 1 .247 

Random effects 3 .11 1 .16, 8.37 
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hat the correlation between the variables for each multivariate

odel is low (i.e., between −0.075 and 0.44). Five climate and en-

ironmental factors are included in the multivariate mixed effects

odel based on the univariate model for the annual parasite inci-

ence ( Table 4 ). 

Based on the results presented in Table 4 , IRR can be computed

or the fixed-effects variables. The IRR for T9 is 0.996 which cor-

esponds to the 0.40% reduction in the annual parasite incidence

hen the number of days in the year with temperature above

5 °C increases by one day. Aramburú et al. (1999) also showed a

egative correlation with temperature and malaria cases, though

heir study area was limited to the Iquitos region. Throughout

any of the redes in Loreto, the temperature falls within optimal

ange (20 °C–28 °C) for mosquito development throughout much of

he year with limited variation ( Appendix A ), which makes much

f Loreto suitable for year-round malaria transmission. However,

ppendix A also shows that for redes that do experience some sea-

onal variations in temperature, the maximum temperatures are

bove this optimal range, while the minimum temperatures re-

ain within the range. As a result, the negative association in our

odel results is likely due to the effect of extremely high tempera-

ures that are not conducive to mosquito development and malaria

ransmission. 

The IRR value for E2 corresponds to a 118% increase in malaria

t health centers located above 100 m. Elevation often serves as a

roxy for other environmental variables and our results do not cor-

oborate what is presented by previous studies, which showed that

osquito densities and annual parasite incidence decrease with in-

reasing elevation ( Drakeley et al., 2005; Attenborough et al., 1997;

ødke et al., 2003; Akhwale et al., 2004 ). However, compared to

he areas these studies focused on (mainly in Africa), Loreto is

haracterized by a lower overall elevation and a smaller range of

levations throughout the region. Hence, the relationship in our

odel results is more likely due to elevation acting as a proxy for

n unobserved characteristic of the region (e.g., vegetation charac-

eristics not captured by NDVI), rather than describing the physical

elationship between malaria incidence and elevation. 

In terms of the SM4, a 0.2% increase in annual parasite inci-

ence is observed when there is an increase by one day in the

umber of days a year with soil moisture above 0.400 m 

3 /m 

3 . This

s in line with a previous study conducted over Kenya, which con-

luded that soil moisture better predicts the biting rates compared

o rainfall ( Patz et al., 1998 ). 
Finally, the increase in P2 and the NDVI are also associated with

n increased in annual parasite incidence. Since increases in NDVI

nd vegetation, in general, are linked to higher temperature and

recipitation, this result confirms that vegetation and precipitation

re fundamental factors by providing breeding sites for mosquitos

 Cui et al., 2009; Hao et al., 2011 ). 

Similar analysis is conducted for the two types of malaria

resent in Peru separately, i.e., P. falciparum and P. vivax annual

arasite incidence. The results of the correlation coefficients and

ultivariate analysis for the P. falciparum -annual parasite incidence

re shown in Tables 5 and 6. 

Based on the coefficient estimates, the calculated IRR value for

he P. falciparum -annual parasite incidence indicates that there is

n increase in P. falciparum- annual parasite incidence associated

ith an increase in E2, P7, and NDVI. E7 and SM1 (yearly aver-

ge soil moisture) are negatively associated with the P. falciparum-

nnual parasite incidence. 

The results of the multivariate analysis and the correlation co-

fficients for the P. vivax- annual parasite incidence are shown in

ables 7 and 3 , respectively. 

Based on the coefficient estimates, the IRR value for the P. vivax

nnual parasite incidence indicates that there is an increase in the

nnual parasite incidence associated with an increase in E2, SM4,

2 and NDVI. The number of days with temperature above 25 °C is

ssociated with a decrease in the annual parasite incidence. These

esults are the same as the annual parasite incidence multivariate

odel, which demonstrates that it is sufficient to use total cases

nstead of the two separate values. 

However, the P. falciparum and P. vivax annual parasite inci-

ence multivariate models present a difference in terms of which

ariable transformation is included in the model. For the P. falci-

arum cases, the number of days with rainfall over 15 mm is in-
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cluded rather than the cumulative rainfall in the wet season. More-

over, for the P. falciparum annual parasite incidence model, the av-

erage yearly soil moisture is included rather than the number of

days with soil moisture above 0.400 m 

3 /m 

3 . 

The main difference between the two malaria types consists in

the severity of the disease. P. falciparum can cause more severe ef-

fects because it multiplies more rapidly in the blood, whereas P.

vivax has dormant liver stages and can relapse several months af-

ter the infecting mosquito bite ( CDC, 2015 ). In Peru, the majority of

reported cases are P. vivax, but P. falciparium transmission contin-

ues to occur. For this study, a multivariate model is created for the

two malaria types and the only difference is for the P. falciparum

annual parasite incidence model, where a different transformation

is used for precipitation and soil moisture. 

5. Conclusion 

In this study, we analyzed annual parasite incidence data from

health centers in the Loreto Department of Peru, located in the

Amazon basin, to assess and quantify the association between

malaria and various environmental and atmospheric factors. This

region has a low population density and a large land area, making

it difficult to directly collect high-resolution environmental data.

Remote sensing and modeling techniques are particularly useful in

remote areas like Loreto, providing temporally and spatially contin-

uous Earth observations. This work presents a first attempt to in-

vestigate the usefulness of these techniques for better understand-

ing and quantifying the relationship between trends in malaria in-

cidence and a complete set of land surface and atmospheric condi-

tions. 

Ultimately, it is concluded that since the climate and environ-

mental factors have a larger impact on the vector instead of the

parasite, there is not a need to separately test the two malaria

types. Specifically, higher temperature increases the number of

blood meals, and number of eggs laid, which increases the num-

ber of mosquitos in a given area. Rainfall creates the sites the

mosquitoes need to breed, so an increase in rainfall can result in a

larger number of potential breeding locations, thereby increasing

mosquito populations. Rainfall also influences vegetation growth

and soil moisture, providing a moist environment conducive for

mosquito breeding and longevity ( Kar et al., 2014 ). Results from

this study indicate that abundant and healthy vegetation (which

corresponds to high NDVI), high precipitation amount in the wet

season, elevation above 100 m, and high soil moisture content have

a positive impact on annual parasite incidence in Loreto, Peru. 

Malaria transmission is extremely complex. It is impacted by

many factors, including gender, age, housing conditions, weather

conditions, distance to standing water and occupation, among oth-

ers ( Ayele et al., 2012 ). This work solely focuses on understand-

ing the role of climate and environmental factors, which is partic-

ularly useful, since these data are open source and available for
ny area of the world. Thus, similar analysis could be conducted

n any other region where vector-borne disease data are available.

hile our study is limited by not including anthropogenic vari-

bles, further studies would benefit by incorporating other factors

uch as population age, occupation, access to healthcare, education,

nd distance from standing water. Future work could also integrate

nformation regarding population distribution to better character-

ze the environmental and climate conditions the population is ex-

osed to. However, considering the limited connectivity in Loreto

only through rivers in nearly all cases) and the hypoendemic state

f malaria in this region, we believe anthropogenic-related risk fac-

ors play a less important role than the weather and environmental

onditions when examining malaria incidence over broad temporal

cales. 

Because parasite incidence is only available on a yearly scale,

 lag analysis could not be performed. In a lag analysis, malaria

ases are compared with the environmental or climate conditions

hat occurred in a certain past period, thus incorporating time for

osquitoes to breed and for malaria symptoms to show. Given the

ime scale of our incidence data, we evaluated numerous transfor-

ations of the climate and environmental variables in an effort to

nd those having the strongest relationship with malaria incidence

n this region. Although this approach was exploratory and created

emporal mismatches among the variables, these transformations

emained grounded to established relationships among the phe-

omena and were synchronized with the temporal range of the in-

idence data. While our models identified vegetation, precipitation,

levation, and soil moisture as important predictors of malaria in-

idence, the temporal mismatch and ecological nature of our anal-

sis do not allow for us to establish causality based on our results.

This work represents an important first step to understanding

he dynamics between malaria incidence and the climate and envi-

onmental conditions in the Loreto region. Specifically, we focused

n understanding the explanatory factors of malaria, rather than

redicting incidence rates, which would necessitate a much dif-

erent overall modeling approach. Despite the highlighted limita-

ions, results from this study have the potential of being useful for

ealthcare workers in malaria endemic areas and being integrated

ithin a malaria elimination plan by creating risk maps. Results

rom this and future studies will inform efforts to develop a global

ramework for predicting and monitoring the spread of malaria,

specially in relation to climate and environmental variables and

heir change over time. 
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A  red for 2 009–2013 
ppendix A: Weekly time series for each weather parameter per

Precipitation 

Temperature 
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Humidity 

Soil Moisture 
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NDVI 

EVI 
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 year (m) 

ason (m) 

ason (m) 

 rainfall 

nfall over 10 mm 

nfall over 12 mm 

nfall over 15 mm 

rainfall over 60 mm 

e in the whole year ( °C) 

e in the wet season ( °C) 

e in the dry season ( °C) 

ure in the whole year ( °C) 

ure in the wet season ( °C) 

re in the whole year ( °C) 

re in the dry season ( °C) 

perature above 30 °C 
perature above 25 °C 
perature under 20 °C 
perature under 15 °C 
ight (6pm/6am) in the wet season ( °C) 

ight (6pm/6am) in the dry season ( °C) 

n the whole year (kg vapor × kgair −1 ) 

n the wet season (kg vapor × kgair −1 ) 

n the dry season (kg vapor × kgair −1 ) 

midity above 0.018 kg vapor × kgair −1 

midity under 0.016 kg vapor × kgair −1 

midity under 0.014 kg vapor × kgair −1 

re in the whole year (m 

3 ∗m 

−3 ) 

re in the wet season (m 

3 ∗m 

−3 ) 

re in the dry season (m 

3 ∗m 

−3 ) 

l moisture above 0.400 m 

3 ∗m 

−3 

l moisture under 0.300 m 

3 ∗m 

−3 

 vegetation index 

ed difference vegetation Index 

 

 (95% CI) AIC 

1 .532, 1.578 219 ,412 

2 .049, 2.138 218 ,222 

1 .452, 1.544 222 ,214 

0 .994, 0.993 220 ,441 

1 .012, 1.013 220 ,110 

1 .014, 1.015 220 ,089 

1 .017, 1.018 219 ,707 

1 .059, 1.066 221 ,169 

0 .674, 0.692 219 ,411 

1 .034, 1.060 222 ,804 

0 .681, 0.694 216 ,885 

0 .926, 0.933 221 ,103 

0 .897, 0.905 220 ,892 

0 .912, 0.933 222 ,676 

0 .813, 0.829 221 ,505 

0 .997, 0.999 222 ,799 

0 .994, 0.994 215 ,851 

1 .815, 2.167 222 ,701 

( continued on next page ) 
Appendix B. Acronyms 

Precipitation 

P 1 Cumulative in the whole

P 2 Cumulative in the wet se

P 3 Cumulative in the dry se

P 4 Number of days without

P 5 Number of days with rai

P 6 Number of days with rai

P 7 Number of days with rai

P 8 Number of months with 

Temperature 

T 1 Average daily temperatur

T 2 Average daily temperatur

T 3 Average daily temperatur

T 4 Mean maximal temperat

T 5 Mean maximal temperat

T 6 Mean minimal temperatu

T 7 Mean minimal temperatu

T 8 Number of days with tem

T 9 Number of days with tem

T 10 Number of days with tem

T 11 Number of days with tem

T 12 Average temperature at n

T 13 Average temperature at n

Humidity 

H 1 Average daily humidity i

H 2 Average daily humidity i

H 3 Average daily humidity i

H 4 Number of days with hu

H 5 Number of days with hu

H 6 Number of days with hu

Soil moisture 

SM1 Average daily soil moistu

SM 2 Average daily soil moistu

SM 3 Average daily soil moistu

SM 4 Number of days with soi

SM 5 Number of days with soi

Vegetation index 

EVI Average annual enhanced

NDVI Average annual normaliz

Elevation 

E 1 Elevation (m) 

E 2 Elevation above 100 m 

E 3 Elevation above 150 m 

E 4 Elevation above 200 m 

Appendix C: Univariate analysis for the annual parasite incidence

Parameter Incidence rate ratio

P 1 1 .555 

P 2 2 .094 

P 3 1 .498 

P 4 0 .993 

P 5 1 .013 

P 6 1 .014 

P 7 1 .017 

P 8 1 .062 

T 1 0 .683 

T 2 1 .04 

T 3 0 .688 

T 4 0 .929 

T 5 0 .900 

T 6 0 .922 

T 7 0 .821 

T 8 0 .998 

T 9 0 .994 

T 10 1 .983 
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 (95% CI) AIC 

222 ,857 

0 .806, 0.819 220 ,360 

0 .883, 0.891 219 ,256 

1.11e-67, 1.58e-58 222 ,143 

8.3e-119, 2.5e-108 221 ,067 

3.48e-28, 1.35e-21 222 ,652 

0 .995, 0.996 220 ,335 

0 .997, 0.998 222 ,362 

0 .995, 0.996 222 ,121 

706, 1109 219 ,376 

221, 353 220 ,638 

656, 984 218 ,650 

1 .0 03, 1.0 04 218 ,015 

0 .998, 0.998 221 ,520 

0 .886, 1.754 222 ,858 

1148, 1922 219 ,755 

0 .999, 1.0 0 0 222 ,858 

2 .652, 2.799 216 ,387 

0 .991, 1.032 222 ,858 

0 .552, 0.584 221 ,168 

A e incidence 

tio (95% CI) AIC 

1 .226, 1.319 50 ,210 

1 .426, 1.587 50 ,153 

1 .158, 1.350 50 ,343 

1 .0 0 0, 1.0 02 50 ,353 

1 .0 05, 1.0 07 50 ,258 

1 .008, 1.010 50 ,176 

1 .010, 1.012 50 ,143 

1 .045, 1.059 50 ,182 

0 .502, 0.530 48 ,190 

0 .769, 0.810 50 ,059 

0 .534, 0.558 47 ,360 

0 .975, 0.990 50 ,358 

0 .934, 0.955 50 ,274 

0 .773, 0.815 50 ,101 

0 .779, 0.819 50 ,082 

0 .988, 0.990 49 ,837 

0 .989, 0.989 46 ,616 

2 .343, 3.166 50 ,273 

50 ,373 

0 .836, 0.869 50 ,119 

0 .960, 0.978 50 ,332 

6.1e-151, 2.3e-129 49 ,720 

1.0e-222, 5.4e-198 49 ,243 

1.03e-77, 3.11e-62 50 ,062 

0 .990, 0.991 48 ,306 

0 .997, 0.998 50 ,321 

0 .994, 0.995 50 ,088 

79, 220 50 ,029 

5 .97, 17.6 50 ,305 

258, 648 49 ,719 

1 .0 0, 1.0 0 50 ,369 

0 .997, 0.998 50 ,038 

28 .9, 148.7 50 ,274 

648 ,592, 2,285,897 48 ,441 

1 .0 0 0, 1.0 0 0 50 ,357 

3 .38, 3.95 48 ,988 

1 .13, 1.24 50 ,319 

0 .426, 0.488 49 ,789 
Parameter Incidence rate ratio

T 11 1 

T 12 0 .812 

T 13 0 .887 

H 1 4.18e-63 

H 2 1.5e-113 

H 3 6.85e-25 

H 4 0 .995 

H 5 0 .997 

H 6 0 .996 

SM 1 885 

SM 2 279 

SM 3 803 

SM 4 1 .003 

SM 5 0 .998 

EVI 1 .246 

NDVI 1485 

E 1 1 .0 0 0 

E 2 2 .730 

E 3 1 .011 

E 4 0 .568 

ppendix D: Univariate analysis for P. falciparum annual parasit

Parameter Incidence rate ra

P 1 1 .271 

P 2 1 .505 

P 3 1 .250 

P 4 1 .001 

P 5 1 .006 

P 6 1 .009 

P 7 1 .011 

P 8 1 .052 

T 1 0 .516 

T 2 0 .789 

T 3 0 .546 

T 4 0 .982 

T 5 0 .945 

T 6 0 .794 

T 7 0 .799 

T 8 0 .989 

T 9 0 .989 

T 10 2 .72 

T 11 1 

T 12 0 .852 

T 13 0 .969 

H 1 3.7e-140 

H 2 2.4e-210 

H 3 5.66e-70 

H 4 0 .991 

H 5 0 .998 

H 6 0 .994 

SM 1 132 

SM 2 10 .2 

SM 3 409 

SM 4 1 .0 0 0 

SM 5 0 .997 

EVI 65 

NDVI 1217 

E 1 1 .0 0 0 

E 2 3 .657 

E 3 1 .190 

E 4 0 .456 
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e incidence 

tio (95% CI) AIC 

1 .589, 1.641 184 ,574 

2 .175, 2.271 183 ,398 

1 .497, 1.601 187 ,353 

0 .990, 0.99 184 ,823 

1 .013, 1.014 185 ,230 

1 .014, 1.015 185 ,358 

1 .017, 1.019 185 ,006 

1 .061, 1.067 186 ,487 

0 .724, 0.745 186 ,183 

1 .110, 1.141 187 ,698 

0 .718, 0.734 184 ,456 

0 .915, 0.922 186 ,029 

0 .886, 0.896 186 ,025 

0 .941, 0.965 187 ,932 

0 .816, 0.835 186 ,922 

1 .0 0 0, 1.0 01 187 ,978 

0 .994, 0.995 183 ,856 

1 .587, 1.977 187 ,910 

187 ,984 

0 .796, 0.811 185 ,704 

0 .865, 0.873 184 ,008 

1.05e-50, 1.42e-40 187 ,683 

4.82e-97, 1.97e-85 187 ,047 

3.71e-18, 7.33e-11 187 ,931 

0 .996, 0.997 186 ,813 

0 .997, 0.998 187 ,531 

0 .996, 0.996 187 ,491 

1092, 1806 184 ,779 

464, 779 185 ,656 

761, 1195 184 ,410 

1 .0 04, 1.0 04 182 ,365 

0 .998, 0.998 186 ,975 

0 .365, 0.776 187 ,975 

298, 526 186 ,259 

0 .999, 1.0 0 0 187 ,985 

2 .533, 2.683 182 ,838 

0 .955, 0.998 187 ,981 

0 .579, 0.616 186 ,838 

ivariate Models 

AIC 

222 ,857 

215 ,851 

210 ,815 

208 ,848 

205 ,998 

+ NDVI 205 ,806 

 NDVI + H4 ∗ 204 ,769 

206 ,882 

d with NDVI and SM4 

AIC 

50 ,373 

46 ,616 

45 ,878 

44 ,927 

45 ,266 

44 ,996 

45 ,166 

 SM3 44 ,992 

 SM3 + P7 ∗∗ 44 ,891 

 SM1 + P7 44 ,854 

were correlated 

terval for SM3 included 

ed 
Appendix E: Univariate analysis for P. vivax cases annual parasit

Parameter Incidence rate ra

P 1 1 .611 

P 2 2 .220 

P 3 1 .540 

P 4 0 .991 

P 5 1 .014 

P 6 1 .015 

P 7 1 .018 

P 8 1 .064 

T 1 0 .734 

T 2 1 .126 

T 3 0 .726 

T 4 0 .918 

T 5 0 .891 

T 6 0 .953 

T 7 0 .825 

T 8 1 .0 0 0 

T 9 0 .994 

T 10 1 .772 

T 11 1 

T 12 0 .804 

T 13 0 .869 

H 1 1.22e-45 

H 2 3.08e-91 

H 3 1.65e-14 

H 4 0 .996 

H 5 0 .997 

H 6 0 .996 

SM 1 1404 

SM 2 601 

SM 3 954 

SM 4 1 .004 

SM 5 0 .998 

EVI 0 .533 

NDVI 396 

E 1 0 .999 

E 2 2 .607 

E 3 0 .976 

E 4 0 .597 

Appendix F: AIC using the Forward selection method for the Mult

P. falciparum and P. vivax 

Model 

Empty 

T9 

T9 + E2 

T9 + E2 + SM4 

T9 + E2 + SM4 + P2 

T9 + E2 + SM4 + P2 

T9 + E2 + SM4 + P2 +
T9 + E2 + P2 + H4 + 

∗ H4 was correlate

P. falciparum 

Model 

Empty 

T9 

T9 + H4 

T9 + H4 + NDVI ∗

T9 + NDVI 

T9 + NDVI + E2 

T9 + H4 + E2 

T9 + NDVI + E2 +
T9 + NDVI + E2 +
T9 + NDVI + E2 +
∗ H4 and NDVI 
∗∗ Confidence in

zero so SM1 was us



A. Mousam et al. / Advances in Water Resources 108 (2017) 423–438 437 

R

A  

A  

 

A  

A  

 

 

A  

 

A  

 

 

A  

 

 

A  

B  

 

B  

 

 

B  

 

 

 

C  

 

C  

 

 

 

C  

 

 

D  

 

 

G  

 

G  

 

G  

 

G  

 

G  

 

G  

 

G  

H  

 

 

H  

 

 

H  

 

 

 

H  

 

H  

 

 

H  

 

 

H  

 

 

J  

J  

 

 

K  

 

K  

 

K  

L  

 

L  

M  

 

 

M  

 

M  

N  

N  

P  

P  

 

P  

 

P  

 

P  

 

 

R  

 

 

P. vivax 

Model AIC 

Empty 187 ,984 

SM4 182 ,365 

SM4 + E2 177 ,953 

SM4 + E2 + P2 17 ,510 

SM4 + E2 + P2 + T9 173 ,839 

SM4 + E2 + P2 + T9 + NDVI 173 ,832 

SM4 + E2 + P2 + T9 + NDVI + H4 ∗ 173 ,004 

E2 + P2 + T9 + H4 175 ,922 

∗ H4 was correlated with SM4 and NDVI 
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