
IJID Regions 6 (2023) 29–41 

Contents lists available at ScienceDirect 

IJID Regions 

journal homepage: www.elsevier.com/locate/ijregi 

Effects of hydrometeorological and other factors on SARS-CoV-2 

reproduction number in three contiguous countries of tropical Andean 

South America: a spatiotemporally disaggregated time series analysis 

Josh M. Colston 

a , §, Patrick Hinson 

b , §, Nhat-Lan H. Nguyen 

b , §, Yen Ting Chen 

c , §, 

Hamada S. Badr d , Gaige H. Kerr e , Lauren M. Gardner f , David N. Martin 

g , Antonio M. Quispe 

h , 

Francesca Schiaffino 

i , j , Margaret N. Kosek 

j , ∗ , Benjamin F. Zaitchik 

e 

a Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA 
b College of Arts and Sciences, University of Virginia, VA, USA 
c Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan 
d Department of Earth and Planetary Sciences, Johns Hopkins Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA 
e Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA 
f Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA 
g Claude Moore Health Sciences Library, University of Virginia School of Medicine, VA, USA 
h Postgraduate School, Universidad Continental, Lima, Peru 
i Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru; 
j Division of Infectious Diseases and International Health and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA 

a r t i c l e i n f o 

Keywords: 

coronavirus 

COVID-19 

SARS-CoV-2 

climate 

hydrometeorology 

pandemic disease 

Latin America 

Peru 

Ecuador 

Colombia 

a b s t r a c t 

Background: The COVID-19 pandemic has caused societal disruption globally, and South America has been hit 

harder than other lower-income regions. This study modeled the effects of six weather variables on district- 

level SARS-CoV-2 reproduction numbers ( R t ) in three contiguous countries of tropical Andean South America 

(Colombia, Ecuador, and Peru), adjusting for environmental, policy, healthcare infrastructural and other factors. 

Methods: Daily time-series data on SARS-CoV-2 infections were sourced from the health authorities of the three 

countries at the smallest available administrative level. R t values were calculated and merged by date and unit ID 

with variables from a unified COVID-19 dataset and other publicly available sources for May–December, 2020. 

Generalized additive models were fitted. 

Findings: Relative humidity and solar radiation were inversely associated with SARS-CoV-2 R t . Days with radiation 

above 1000 kJ/m 

2 saw a 1.3% reduction in R t , and those with humidity above 50% recorded a 0.9% reduction 

in R t . Transmission was highest in densely populated districts, and lowest in districts with poor healthcare access 

and on days with lowest population mobility. Wind speed, temperature, region, aggregate government policy 

response, and population age structure had little impact. The fully adjusted model explained 4.3% of R t variance. 

Interpretation: Dry atmospheric conditions of low humidity increase district-level SARS-CoV-2 reproduction num- 

bers, while higher levels of solar radiation decrease district-level SARS-CoV-2 reproduction numbers — effects 

that are comparable in magnitude to population factors like lockdown compliance. Weather monitoring could 

be incorporated into disease surveillance and early warning systems in conjunction with more established risk 

indicators and surveillance measures. 

Funding: NASA’s Group on Earth Observations Work Programme (16-GEO16-0047) 
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Since its discovery in Wuhan, China in December 2019, the SARS-

oV-2 virus has swept the globe, overwhelming national healthcare ser-
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een attributed to the virus ( Center for Systems Science and Engineer-

ng (CSSE) at Johns Hopkins University (JHU), 2021 ). However, the

rue toll is undoubtedly far higher than official statistics, and may have

urpassed 3.8 billion infections (40% of the global population) and 15

illion deaths ( Barber et al., 2022 ). 

South America has been hit harder by the coronavirus disease

COVID-19) pandemic than other predominantly lower-income regions,

ith some of the highest excess mortality and case fatality rates (CFR).

ts 58 million confirmed cases ( > 256 million estimated total) have led to

ver 1.3 million confirmed deaths ( > 1.7 million total), putting further

train on a region where many countries struggle with political insta-

ility, humanitarian crises, and income inequality ( Barber et al., 2022 ;

enter for Systems Science and Engineering (CSSE) at Johns Hopkins

niversity (JHU), 2021 ; The Lancet, 2020 ; Wang et al., 2022 ). 

From the early days of the pandemic, questions were raised about

he possible influences of climate and meteorology on the transmission

f the virus, given the known sensitivity of other respiratory viruses to

hese factors ( Audi et al., 2020 ; O’Reilly et al., 2020 ). One early study

oted that COVID-19 community transmission at the beginning of the

andemic was especially high along a temperate, mid-latitude belt of

he northern hemisphere ( Sajadi et al., 2020 ). However, it was already

lear by that early stage that the influence of such factors was small

elative to that of population density and age structure, and timing of,

nd compliance with, non-pharmaceutical interventions (NPIs), such as

ockdowns, travel restrictions, and hygiene measures. Initial research

ightly prioritized these more proximal drivers ( Carlson et al., 2020 ;

eyer et al., 2020 ; Zaitchik et al., 2020 ). 

With the pandemic in its third year, and with the likely prospect

hat SARS-CoV-2 will continue to circulate as an endemic, seasonal,

nd vaccine-preventable virus for the foreseeable future ( Telenti et al.,

021 ), attention has turned again to the role of meteorological factors

n COVID-19 transmission ( Audi et al., 2020 ; Chen et al., 2021 ). The

emand for real-time data with which to track the global health crisis

as prompted a proliferation of online repositories and interfaces, which

urate and disseminate epidemiological data with a global scope and in-

reasing spatial and temporal resolutions ( Badr et al., 2021 ; Dong et al.,

020 ; Wang et al., 2022 ). 

For further analysis, disease data can be matched by date and lo-

ation to high-resolution estimates of spatiotemporal variation in en-

ironmental and hydrological conditions derived from remote sensing

nd climate models ( Colston et al., 2018 ). Numerous studies have ap-

lied this approach to subnational unit-level case reports in an attempt

o model associations between hydrometeorological variables and SARS-

oV-2 outcomes ( Ma et al., 2021 ; Sera et al., 2021 ). However, there is

onsiderable variation in how confounding factors and errors in case

eporting are captured ( Mecenas et al., 2020 ; Quintana et al., 2021 ),

nd a disproportionate emphasis on high-income countries, mostly in

he temperate mid-latitudes ( Kerr et al., 2021 ). 

The aim of this study was to model the effects of weather on the

istrict-level SARS-CoV-2 reproduction number ( R t ) for three contigu-

us countries of tropical Andean South America (Colombia, Ecuador,

nd Peru), with an expanded suite of hydrometeorological parameters

nd after further adjusting for environmental, policy, healthcare infras-

ructural, and other factors during the first wave of the epidemic, when

 single circulating variant predominated and there was no population-

evel immunity that contributed to transmission dynamics. 

ethods 

cope of analysis 

The three tropical Andean South American countries of Colombia,

cuador, and Peru were chosen for this analysis, since together they

onstitute a large contiguous territory, with a roughly even split be-

ween the northern and southern hemispheres, and broadly divisible

nto coastal, highland, and interior regions. Furthermore, all three coun-
30 
ries have comparable health information system capacity and make

ublicly available daily reports of new COVID-19 cases at high geo-

raphical resolution. The analysis was restricted to the mainland areas

f the three countries, excluding outlying island territories, and to the

eriod from May to December, 2020, during which transmission of the

irus was fully established and NPIs were in place ( Sera et al., 2021 ), but

efore the emergence of major variants of concern and the introduction

f vaccines. 

pidemiological data 

Daily time series data on confirmed SARS-CoV-2 infections were

ourced from national health authority websites at the smallest available

dministrative level (Colombian municipalities, Ecuadorian cantons,

nd Peruvian districts, hereafter generically referred to as ‘districts’)

 Robalino et al., 2021 ; Instituto Nacional de Salud Colombiano, 2021 ;

inisterio de Salud Peruano, 2021 ). These data were used to calculate

istrict-level daily R t using EpiNow2, an R package for estimating time-

arying epidemiological parameters of SARS-CoV-2 from subnational

ase notification data, accounting for right truncation, underreporting,

nd uncertain reporting delays and incubation periods ( Abbott et al.,

020 ). 

Daily, district-level R t estimates were treated as the outcome vari-

ble for the analysis. These are interpreted as the mean number of new

nfections caused by a single infected person on a given day in a given

istrict. If a district records zero cases for an extended period, its daily

 t will converge on a default value of 1, which is difficult to interpret in

he absence of actual disease. However, because the calculation of R t ac-

ounts for the disease incubation period, the metric lags the cases used

o calculate it, so changes in R t may precede increases and decreases

n case counts by several weeks. It is therefore possible for a district to

ave a daily R t of greater than 1 while reporting zero cases, due to the

elay in increases in transmission being reflected in case reporting. 

Due to the high resolution and inclusion of many remote and sparsely

opulated districts in the dataset, there was a large proportion of unit-

ays with zero reported cases of COVID-19 (75.5%). Therefore, all unit-

ays in which both a) no cases were reported and b) R t had a calculated

alue of between 0.95 and 1.05 were excluded. The purpose of this was

o restrict the analysis to observations with interpretable outcome values

elevant to the research question, and to increase the variability and

chieve a more Gaussian distribution of the outcome. 

ydrometeorological data 

Hydrometeorological data were sourced from the unified COVID-

9 dataset compiled by Badr and colleagues ( Badr et al., 2021 ), in

hich variables were in turn extracted from the second-generation

orth American Land Data Assimilation System (NLDAS-2) and the

fth-generation European Centre for Medium-Range Weather Forecasts

ECMWF) atmospheric reanalysis of the global climate (ERA5) at ad-

inistrative unit centroids ( Center for International Earth Science In-

ormation Network (CIESIN), 2016 ; Hersbach et al., 2020 ; Xia et al.,

012 ). Both datasets perform well in validation studies ( Tarek et al.,

020 ; Xia et al., 2012 ) and are comparable to those used in retrospec-

ive infectious disease modeling ( Colston et al., 2019 ), with the advan-

age that their much shorter latency periods (4–6 days) make them bet-

er suited for prospective forecasting of disease dynamics ( Badr et al.,

021 ). All available hourly, population-weighted ERA5 and NLDAS val-

es since January 1, 2020 were extracted, aggregated to daily mean or

otal values, and matched by date and district to the R t values. 

The following variables were included as the main exposures of in-

erest, based on their documented or hypothesized associations with

ARS-CoV-2: near surface air temperature (°C) ( Morris et al., 2021 ;

ubin et al., 2020 ); relative humidity (%) ( Ahlawat et al., 2020 );

olar radiation (kJ/m 

2 ) ( Ma et al., 2020 ); total precipitation vol-

me (mm) ( Shenoy et al., 2022 ); average 10 m above ground wind
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Table 1 

Definitions of variables used in the analysis 

Variable Units/categories 

Temporal 

resolution Spatial resolution Source 

COVID-19 diagnoses Positive cases Daily total Colombia: 2nd administrative 

level (municipalities) 

( Instituto Nacional de Salud 

Colombiano, 2021 ) 

Ecuador: 2nd administrative level 

(cantons) 

( Robalino et al., 2021 ) 

Peru: 3rd administrative level 

(districts) 

( Ministerio de Salud 

Peruano, 2021 ) 

Effective reproduction number ( R 
t 
) Secondary cases per index case Daily District EpiNow2 ( Abbott et al., 

2020 ) 

Government policy response 

stringency 

% Daily National OxCGRT ( Hale et al., 2021 ) 

Healthcare accessibility Minutes of travel time to nearest health 

facility by motor transport 

Static (2020) District-level average Malaria Atlas Project 

( Weiss et al., 2020 ) 

Natural region Coastal, highland, interior Static District ( INEI/Perú, 2013 ; Instituto 

Geografico Agustin 

Codazzi, 2014 ; This is 

Ecuador, 2021 ) 

Population age structure % population ≥ 65 years of age Static (2020) District-level average WorldPop ( Tatem, 2017 ) 

Population density Population/km 

2 

Population mobility: residential % change relative to baseline Daily Province Google ( Google LLC, 2022 ) 

Air temperature °C Daily average District-level average ERA5 ( Hersbach et al., 2020 , 

p. 5) Precipitation mm 

Specific humidity g/kg 

Soil moisture m 

3 /m 

3 

Solar radiation kJ/m 

2 

Wind speed m/s 
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peed (m/s) ( Majumder and Ray, 2021 ). In addition, average volumet-

ic soil moisture (m 

3 /m 

3 ) was included as a negative control exposure

 Sanderson et al., 2018 ), since it is a variable presumed to affect infec-

ious disease transmission through its influence on pathogen survival

n surfaces and fomites ( Colston et al., 2019 ), which is thought to be at

ost only a secondary mode of SARS-CoV-2 transmission ( Karia et al.,

020 ). Specific humidity (kg/kg) estimates were excluded from the main

nalysis due to their being highly correlated with temperature in this

ataset ( 𝜌 = 0.88), and only included in a secondary analysis reported

n the supplementary appendix . 

ovariate data 

The following variables (summarized in Table 1 ) were included as

ovariates to adjust for their potential confounding effects on the main

ssociations of interest: 

Natural regions: To account for potential residual confounding fac-

ors due to geographical and topographical differences across the three

ountries that may affect disease transmission ( Fernandes et al., 2021 ),

heir territories were grouped into three broad, cross-cutting ecological

ones, based on the ‘natural region’ categories used by the Peruvian na-

ional statistical authority — coastal, highland (the Andes), and interior

the Amazon and Orinoco basins) ( INEI/Perú, 2013; Instituto Geografico

gustin Codazzi, 2014 ; This is Ecuador, 2021 ). These were deemed to

e less arbitrary from the point of view of transmission and meteorolog-

cal dynamics than alternative groupings based on political divisions,

uch as higher-level administrative units. The three regions are shown

n Fig. 3 d. 

Population density: Densely populated urban areas are often struck

arlier and harder by epidemics due to their roles as transport hubs

nd the increased contact rates between susceptible and infectious indi-

iduals ( Smith et al., 2021 ). Since sparsely populated areas may also

iffer systematically in the climatic conditions that they experience,

opulation density was included as a potentially confounding covari-

te in this analysis and calculated as the district-level zonal mean value

xtracted from the WorldPop raster of global population distribution

 Tatem, 2017 ). 

Population age structure: Since the symptomaticity and severity

f SARS-CoV-2 infection increase with age ( Mueller et al., 2020 ), ar-
31 
as with a larger proportion of their population in the more susceptible

lderly age groups may have higher rates of case reporting and infec-

iousness. Population age structure varies geographically to a consider-

ble degree; therefore, the proportion of a district’s population that was

ver the age of 65 years was calculated from the WorldPop raster of

opulation per 5-year age group and included in the model. 

Access to healthcare facilities: The time it takes to travel to a

ealth facility to seek care also varies geographically as a function

f population density, transport infrastructure, and local topography

 Weiss et al., 2020 ). Connectivity has been shown to influence varia-

ion in SARS-CoV-2 outbreaks in sub-Saharan Africa ( Rice et al., 2021 ),

hile travel time to seek care might affect contact rates between infected

nd susceptible individuals or the probability that infected persons are

reated and registered in health information systems. The district-level

ean travel times to the nearest healthcare facility using motorized

ransport in 2020 were extracted using zonal statistics from the geo-

raphical estimates published by Weiss and colleagues ( Weiss et al.,

020 ). 

Government policy response data: The timing and stringency

ith which national governments introduced public health interven-

ions such as travel restrictions, school closures, and bans on gatherings

nd public events are major factors influencing geographical variation

n the trajectory of the pandemic ( Haug et al., 2020 ; Sera et al., 2021 ;

mith et al., 2021 ). The Oxford Covid-19 Government Response Tracker

OxCGRT) project collates information on numerous government policy

esponses into a publicly available database, assigns them scores reflect-

ng their strictness, and aggregates these into policy metrics including

 stringency index ( Hale et al., 2021 ). This was included as a national-

evel, time-varying covariate in this analysis. 

Population mobility: Compliance with NPI mandates and recom-

endations differs among subnational populations, leading to variation

n transmission risk ( Morales-Vives et al., 2022 ; Uddin et al., 2021 ). As

 proxy indicator for compliance with social distancing, lockdown mea-

ures, and travel restrictions, population mobility metrics were sourced

rom Google’s Community Mobility Reports ( Google LLC, 2022 ) These

ndicators track trends in Android smartphone users’ movements over

ime, relative to a pre-pandemic baseline, by subnational region and for

ix categories of location ( Google LLC, 2022 ). The ‘residential’ metric

as used and merged with the database by date at the first adminis-
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Fig. 1. District-level geographical distribution of cumulative reported COVID- 

19 cases and estimated SARS-CoV-2 reproduction number ( R t ) in Colombia, 

Ecuador, and Peru (May 1 –December 31, 2020) 
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rative unit level (hereafter generically referred to as ‘provinces’), since

overage was more complete at this level than for districts. This variable

an be interpreted as the percent change in time spent in residential ar-

as compared with before the pandemic, with a higher value therefore

orresponding to greater population compliance with social distancing

r lockdowns. The Google mobility dataset includes intentional gaps

or unit dates that do not meet a quality and privacy threshold, and

hich are to be considered ‘true unknowns’; therefore, these intermit-

ent missing values were substituted using linear interpolation by date

ithin each province ( Google LLC, 2022 ). 

tatistical analysis: 

Variables were merged based on district/province ID and date, and

ighly skewed variables were normalized using ordered quantile (ORQ)

ransformation. A generalized additive model (GAM) was fitted to the R t 

utcome, assuming a Gaussian distribution, log link, and REML smooth-

ng parameter estimation method. Cubic spline terms with three degrees

f freedom were specified for all continuous exposure variables to ac-

ount for non-linearity. Natural regions were modeled as a factor vari-

ble with the coastal region as the reference category. The model there-

ore has the form: 

 𝑡,𝑑 ∼ 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 
(
𝜇𝑡,𝑑 

)
(1)

og 
(
𝜇𝑡,𝑑 

)
= 𝑓 1 

(
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑡,𝑑 

)
+ 𝑓 2 

(
𝑂𝑅𝑄 ( 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ) 𝑡,𝑑 

)

+ 𝑓 3 
(
𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑡,𝑑 

)
+ 𝑓 4 

(
𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑡,𝑑 

)
+ 𝑓 5 

(
ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 𝑡,𝑑 

)

+ 𝑓 6 
(
𝑂𝑅𝑄 ( 𝑤𝑖𝑛𝑑 ) 𝑡,𝑑 

)
+ 𝑓 7 

(
𝑂𝑅𝑄 ( 𝑎𝑐 𝑐 𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ) 𝑑 

)

+ 𝑓 8 
(
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡,𝑑 

)
+ 𝑓 9 

(
𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑡,𝑑 

)
+ 𝑓 10 

(
𝑂𝑅𝑄 ( 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ) 𝑑 

)

+ 𝑓 11 
(
𝑒𝑙 𝑑𝑒𝑟𝑙 𝑦 𝑑 

)
+ 𝛽1 

(
𝑟𝑒𝑔𝑖𝑜𝑛 = ℎ𝑖𝑔ℎ𝑙𝑎𝑛𝑑 𝑑 

)

+ 𝛽2 
(
𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑑 

)
(2) 

Where t is the date, d is the district, 𝛽𝑖 represents the parametric co-

fficients of each category of the natural region factor variable, 𝑓 𝑖 repre-

ents spline smooth functions of the continuous variables, and ORQ(…)

ignifies ORQ-transformed variables. A within-unit autoregressive cor-

elation structure was specified to account for temporal dependence of

bservations in the same district. The modeled, adjusted associations

ere visualized in partial dependence plots of R t predictions across the

ange of values for each continuous exposure. Variable importance was

ssessed and ranked by computing the mean absolute accumulated local

ffects (ALE) of each predictor. To assess and compare relative effects,

ighly ALE-ranked variables were dichotomized at specific thresholds

nd otherwise identical GAMs refitted to calculate the percent differ-

nces in R t on unit-days above compared with below those thresholds

 Colston et al., 2022 ). To quantify the variance explained by hydrom-

teorological relative to other variables, the R 

2 of the final model was

ompared with that of an otherwise identical model that included only

he non-hydrometeorological predictors. Data processing, visualization,

nd analysis were carried out using R 4.0.3 ( R Core Team, 2020 ), Stata

6 ( StataCorp, 2019 ), and ArcMap 10.8 ( ESRI, 2019 ). 

esults 

Data from the 3212 mainland districts of the three countries were

ncluded for the 245-day period from May 1 to December 31, 2020,

esulting in a dataset with a total of 786 940 unit-day observations. Of

hese, 564 738 (71.8%) observations were excluded due to having both

ero cases and an estimated R t value of between 0.95 and 1.05. A further

952 (3.6%) of the remaining observations had missing mobility index

ata, leaving 184 870 complete observations to which the model was

tted. 

Fig. 1 shows choropleth maps of the geographical distribution of

umulative COVID-19 cases and average SARS-CoV-2 R t (after apply-

ng exclusion criteria) summarized from daily values over the period of
32 
nalysis. Neither showed a marked geographical pattern, although cu-

ulative case burden ( Fig. 1 a) exhibited notably lower values in the

eruvian highland districts, while many of the highest average R t val-

es ( Fig. 1 b) were seen in the Ecuadorian and Colombian highlands.

n Peru, the districts reporting more than 10 000 cases over the analy-

is period were in the Greater Lima Region as well as the other coastal

ities of Trujillo and Chiclayo, while in Ecuador, aside from cantons of

he three major cities of Guayaquil, Quito, and Cuenca, the much less

opulous canton of Cañar also exceeded this threshold. Colombia expe-

ienced more numerous pockets of high cumulative cases in the major

etropolitan municipalities of its highlands — Bogotá, Medellín, Cali

and Caribbean coast — Barranquilla, Cartagena — as well as several

elatively smaller cities, including Valledupar, Manizales, and Soledad. 

Fig. 2 shows equivalent choropleth maps for averages of the six

ydrometeorological variables. The lowest average temperature values

 Fig. 2 a) occurred along the Andes, particularly in the southern Peru-

ian stretch, while the highest occurred in the low-lying interior re-

ions of the Amazon and Orinoco basins, as well as coastal Ecuador and

olombia. Relative humidity ( Fig. 2 b) and soil moisture ( Fig. 2 c) ex-

ibited similar spatial distributions, with the highest average values in

he interior areas of the three countries and along the Colombian coast,

xcept for the arid Guajira peninsula, which had very low soil mois-

ure content of < 0.2 m 

3 /m 

3 . Other areas of very low humidity and soil

oisture included Peru’s coastal Sechura Desert and Colombia’s central

atacoa Desert, as well as small pockets along the Ecuadorian coast.

verage wind speeds ( Fig. 2 d) exceeded 1 m/s along most of the Pa-

ific and Caribbean coasts, and in the high elevation Andean districts,

hile the mid-elevation windward and leeward Andean districts tended

o have wind speeds of less than 0.5 m/s, as did parts of north cen-

ral Colombia. Precipitation distribution ( Fig. 2 e) largely mirrored that

f soil moisture and relative humidity, with the Guajira, Sechura, and

atocoa Deserts experiencing low average daily rainfall of < 1.5 mm,

nd the Pacific coast and interior of Colombia exhibiting the wettest

onditions. A belt of high solar radiation ( Fig. 2 f) extended along Peru’s

oast, which widened in the southeast to incorporate highland areas of

he Andean plateau. The only other area with comparable radiation lev-

ls was on Colombia’s Guajira peninsula. 

Fig. 3 shows equivalent maps for the non-hydrometeorological co-

ariates, including the extents of the three natural regions ( Fig. 3 d).

he population of the three countries ( Fig. 3 f) is concentrated along the
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Fig. 2. District-level geographical distribution of six hydrometeorological variables in Colombia, Ecuador, and Peru (mean of daily averages, May 1–December 31, 

2020) 
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oasts and highlands, with the exceptions of Colombia’s sparsely pop-

lated Darién gap and the high elevation districts of Peru’s southeast

ndes. The population of the countries’ interiors is not only sparse, but

lso most highly skewed towards the younger age groups ( Fig. 3 e), while

he highlands and Peru’s coastal plains have some of the districts with

he highest percentage of population over 65 years. Access to health-

are, as measured by average travel time to the nearest health facility

y motor transport ( Fig. 3 a), tends to vary inversely with population
33 
ensity, with the lowest levels of accessibility seen in the interior re-

ions and along Colombia’s Pacific coast, with the coasts and Andean

ighlands having the majority of districts with an average travel time

f under an hour. Over the period from May to December, 2020, Peru

ad the most, and Ecuador the least, stringent policy response to the

andemic ( Fig. 3 b). Average time spent in residential locations ( Fig. 3 c)

as highest (meaning mobility was lowest) in Peru’s coastal and south-

rn highland areas, in Ecuador’s central highlands, and in the Capital
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Fig. 3. District-level geographical distribution of six covariate variables in Colombia, Ecuador, and Peru (May 1–December 31, 2020) 
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istrict of Bogotá, Colombia, and lowest in provinces along the coun-

ries’ land borders and Colombia’s Pacific coast. 

Fig. 4 shows the adjusted associations from the GAM. Precipitation

nd wind speed were ORQ-transformed due to their skewed distribu-

ions. Five of the six variables were highly statistically significantly as-

ociated with the outcome at the 𝛼 < 0.0001 level, the exception being

ind speed, which was not significant at the 𝛼 < 0.05 level. The effect of

emperature ( Fig. 4 a) on district-level R was negligible in size, taking on
t 

34 
 slight sinusoidal shape across the range of the variable’s distribution.

recipitation ( Fig. 4 b) showed a broadly lop-sided U-shaped association

ith R t , with the lowest predicted value in the mid-range and the highest

t the upper extreme. The effect of soil moisture ( Fig. 4 c) was direct be-

ow a moisture value of approximately 0.35 m 

3 /m 

3 , before arcing back

ownward above that threshold. Solar radiation’s association ( Fig. 4 d)

ook the form of a descending arc, with the inverse relationship most

arked above a threshold of approximately 700 kJ/m 

2 , and the lowest



J.M. Colston, P. Hinson, N.H. Nguyen et al. IJID Regions 6 (2023) 29–41 

Fig. 4. Adjusted associations between six hydrometeorological variables and daily COVID-19 reproduction number ( R t values) predicted by a generalized additive 

model 
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redicted R t for any of the hydrometeorological variables ( R t < 0.97) oc-

urring at the upper radiation extreme of close to 1500 kJ/m 

2 . Relative

umidity ( Fig. 4 e) had an effect size comparable to that of solar radia-

ion, with increasing humidity mostly predicting decreasing R t (except

or a plateau from around 70–80% relative humidity) and a difference
35 
n predicted R t of approximately 0.04 between the extremes of the dis-

ribution. No discernable association of wind speed with R t ( Fig. 4 f) was

bserved. 

Fig. 5 shows the equivalent associations for the five continuous, non-

ydrometeorological covariates and the coefficient estimates for the two
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Fig. 5. Adjusted associations between six covariate variables and daily COVID-19 reproduction numbers ( R t values) predicted by a generalized additive model 
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omparison natural region categories relative to the ‘coastal’ reference

ategory. Population density and health facility accessibility were ORQ-

ransformed. R t increased with longer travel times to health facilities

 Fig. 5 a) from a value of 0.98 for the shortest time to just above 1 in the

pper half of the ORQ-transformed accessibility distribution. The gov-
36 
rnment response index ( Fig. 5 b) had a negligible effect on SARS-CoV-2

 t and did not predict a value below 1 at any value. Population mobility

 Fig. 5 c) had a large, steep inverse association with R t below a percent

hange of 10% — meaning that R t increased when time spent in resi-

ences showed little decrease or increased relative to the pre-pandemic
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aseline — and a steady direct relationship above that threshold. The

djusted effects of the categorical natural region variable ( Fig. 5 d) were

mall yet statistically significant, particularly for the highland region.

opulation density ( Fig. 5 e) had a direct association with the outcome,

ith the most densely populated districts having an adjusted predicted

 t of > 1.05, along with population mobility, with one of the largest

ffect sizes observed in this analysis. Though statistically significant at

he 𝛼 < 0.001 level, the effect of population age structure ( Fig. 5 f) was

egligible, consisting of a shallow, inverse U-shaped association, with a

eak at roughly 13% of the population aged over 65 years. 

The final model explained just 4.3% of the variance in the daily

istrict SARS-CoV-2 R t , compared with 2.8% by an equivalent model

hat excluded the hydrometeorological variables, and 2.3% by one that

ncluded only those variables. ALEs for all variables were correspond-

ngly small (Supplementary Table S1), with population density rank-

ng highest in terms of contribution to R t (ALE = 0.008), followed by

ealthcare accessibility (ALE = 0.005). In models in which the highest

LE-ranked variables were dichotomized (Table S1), differences in aver-

ge predicted R t for unit-days on either side of variable-specific thresh-

lds were also modest. Average adjusted R t was 0.9% lower on days in

hich relative humidity was higher than 50%, compared with less hu-

id days, but 0.8% higher when soil moisture was above 0.1 m 

3 /m 

3 .

ays in which solar radiation exceeded 1000 kJ/m 

2 had 1.3% lower

 t , while the equivalent differences for districts in which average travel

ime to health facilities was more than half an hour and with a popu-

ation density of more than 100 pop/km 

2 were, respectively, increases

f 0.4% and a 0.9%. On days in which mobility was reduced by 10% or

ore relative to pre-pandemic levels, R t fell by an average of 0.3% 

iscussion 

The impacts of the COVID-19 pandemic on families, societies, and

nstitutions have been incalculable. Furthermore, the notable spatiotem-

oral variability in these impacts is seemingly not fully attributable to

opulation susceptibility and health system factors alone ( Sorci et al.,

020 ), implicating a potential influence of climate and environment on

he transmission and survivability of SARS-CoV-2 ( Zaitchik et al., 2020 ).

arly surveys of the evidence base highlighted a paucity of findings

rom the global South and tropical regions, insufficient spatiotemporal

cope and resolution in analyses, and a failure to account for confound-

ng from non-climatological factors ( Kerr et al., 2021 ; Quintana et al.,

021 ; Smit et al., 2020 ; Zaitchik et al., 2020 ). More recently, as at-

empts to track the pandemic have coalesced into a wide variety of

pen datasets and online interfaces ( Badr et al., 2021 ; Dong et al., 2020 ;

ahltinez et al., 2022 ), researchers have begun to address these knowl-

dge gaps. Numerous recent studies have assessed effects on COVID-19

utcomes while adjusting for multiple hydrometeorological variables

 Ma et al., 2020 ; Yuan et al., 2021 ) and other covariates, including

opulation density ( Smith et al., 2021 ), age structure ( Landier et al.,

021 ), NPI compliance ( Ganslmeier et al., 2021 ; Rubin et al., 2020 ),

nd government interventions ( Ledebur et al., 2022 ), while others have

ocused on single countries in equatorial regions ( Kerr et al., 2022 ;

orenzo et al., 2021 ; Yin et al., 2022 ) or multiple countries and loca-

ions spanning wide latitudes and both hemispheres ( Carleton et al.,

021 ; Sarkodie and Owusu, 2020 ; Sera et al., 2021 ). Our study is the

rst to bring together all these elements and at a high temporal resolu-

ion, with multiple, cross-cutting spatial scales, and for three neighbor-

ng countries that, despite including diverse populations and ecologies,

hare important commonalities in their pandemic experiences. 

The ancestor of the SARS-CoV-2 index virus likely evolved

hrough transmission among bats living in cool, dark, crowded caves

 MacLean et al., 2021 ; Temmam et al., 2022 ). The primary direct,

erson-to-person mode of transmission of the pathogen is via virus-laden

erosols exhaled by infectious individuals, while an indirect route via

ontact with contaminated fomites is thought to make a minor contri-

ution ( Karia et al., 2020 ; Zhang et al., 2020 ). Small-scale atmospheric
37 
onditions, such as the temperature, pressure, and humidity of the air,

ffect the rates at which aerosolized respiratory droplets are formed,

uspended, and dispersed, and thus influence disease transmission in

omplex ways ( Ahlawat et al., 2020 ; Colston et al., 2019 ). 

The negative association of relative humidity on SARS-CoV-2 R t iden-

ified here, among the largest absolute effect sizes of the hydrometeoro-

ogical variables analyzed (though lower ranking by ALE), is consistent

ith one of the most widely documented of the disease’s environmen-

al sensitivities as well as current understanding regarding the virus’s

odes of transmission ( Ahlawat et al., 2020 ; Hosseini, 2020 ). Whether

uantified by absolute or relative measures, humidity has been shown to

e an influential COVID-19 driver across many contexts ( Majumder and

ay, 2021 ; Paraskevis et al., 2021 ), with very dry atmospheric condi-

ions appearing to favor transmission, as has been shown for other res-

iratory ( Lin and Marr, 2020 ) and non-respiratory ( Colston et al., 2022 )

iruses. When expelled into dry air, respiratory microdroplets quickly

hrink due to evaporation of their liquid content, allowing them to re-

ain suspended for longer and increasing their viral particle concentra-

ion ( Hosseini, 2020 ; Kumar and Morawska, 2019 ). Relative humidity

lso has a separate U-shaped association with SARS-CoV-2 viability out-

ide the human host, with its lowest viability occurring at around 60%

ir saturation and its highest at the extremes ( Ahlawat et al., 2020 ).

ompeting effects of decreasing transmissibility and increasing viabil-

ty in the upper humidity extreme are consistent with the plateau effect

een in these results at relative humidities > 70%. In a contemporaneous

tudy focused on Brazilian states in 2020 and 2021 (Kerr et al., 2022),

umidity was also found to be the most important hydrometeorologi-

al variable; however, the direction of the humidity–R t relationship was

pposite to the one found here. 

Although there is less consensus surrounding the effect of temper-

ture, it is widely supposed to have an association similar to that of

umidity. Indeed, numerous studies have reported decreasing COVID-

9 risk with increasing temperatures ( Kerr et al., 2022 ; Landier et al.,

021 ; Paraskevis et al., 2021 ; Yuan et al., 2021 ). While this might at

rst glance seem to be at odds with the negligible and non-linear effect

ound in this analysis, comparisons with results specifically from other

ropical settings suggest a more nuanced picture. One such study within

 single season in Singapore ( Lorenzo et al., 2021 ), in January to April,

020, found a strong and significant direct association between tem-

erature and COVID-19 case numbers, while another, also of a tropical,

quatorial South American country (Brazil), found opposing effects of

emperature in the March to May period (direct) compared with June

o August (inverse) ( Yin et al., 2022 ). Another study of > 400 cities

cross a wider range of latitudes in both the northern and southern

emispheres found a more complex, sinusoidally shaped relationship of

emperature to transmission ( Sera et al., 2021 ). Since the domain of this

nalysis spanned only tropical latitudes either side of the equator, the

ull-like finding for temperature could plausibly be the result of com-

eting effects between the two hemispheres at different times over the

ear canceling each other out. However, marginal temperature effects

redicted by multivariable models may be sensitive to the choice of hu-

idity metric. The 400 city study adjusted for both relative humidity

nd absolute humidity ( Sera et al., 2021 ), while a study of US coun-

ies that adjusted temperature for specific humidity found yet another

omplex and non-linear effect shape ( Ma et al., 2021 ). This could reflect

ifferent drivers of transmission in temperate versus tropical climates.

hese three Andean countries generally have more tropical climates,

ith relatively small daily variations in hydrometeorological variables,

hereas Brazil’s climate spans tropical zones in its north and temper-

te zones in its south. Supplementary Figure S1 compares the results

f this model with an otherwise identical one that substituted specific

or relative humidity and reveals a somewhat more pronounced and di-

ect effect of temperature in the specific humidity model. Temperature

nd specific humidity are closely related variables and exhibited multi-

ollinearity in our dataset (a variance inflation for specific humidity of

 10 in models that included temperature). Moreover, certain combina-
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r  
ions of their values (e.g. low temperature with high specific humidity)

imply do not occur naturally, so attempts to visualize effects of vari-

tions in one parameter while holding the other constant at its mean

alue are in some sense abstractions. 

Our analysis also identified a sizeable, inverse association of solar

adiation with COVID-19 transmission consistent with numerous other

tudies ( Carleton et al., 2021 ; Majumder and Ray, 2021 ; Smith et al.,

021 ), most notably by Ma and colleagues, who also found this to be

ost pronounced above a threshold of ∼1000 kJ/m 

2 ( Ma et al., 2021 ).

uch findings have been interpreted as reflecting the deactivating effect

f sunlight on SARS-CoV-2 virions, as has been observed in laboratory

onditions in aerosols ( Dabisch et al., 2021 ), on surfaces ( Raiteux et al.,

021 ; Ratnesar-Shumate et al., 2020 ), and in mucus ( Sloan et al., 2021 ).

owever, commentators have noted the difficulty of disentangling a di-

ect effect of sunlight on the disease agent itself, from its confounding

ffect on host behaviors, such as rainy or cloudy weather driving people

o congregate indoors, thereby increasing contact rates ( Carleton et al.,

021 ; Colston et al., 2022 ). The fact that this effect was observed with

djustment for precipitation lends credibility to the supposed direct ef-

ect. Similarly, a substantial effect of precipitation was observed with

djustment for population mobility, the highest predicted R t occurring

t the high end of the precipitation distribution, the lowest in the mid-

ange, and a secondary peak on rainless days. Given the absence of

 waterborne route of transmission, it is tempting to attribute this to

esidual, unobserved confounding from host behaviors that are incom-

letely captured by the mobility variable, rather than a direct, causal

mpact of rainfall on virus dispersal. However, the role of aerosolized

articles from wastewater cannot be ruled out ( Senatore et al., 2021 ).

n Andean countries like these, with wide inequities in sanitation cov-

rage, many community-level environments are characterized by poor

ewerage infrastructure ( French et al., 2021 ), where open wastewater

anals serve the dual functions of drainage for rainwater runoff, and con-

eyance of effluent discharge from household latrines ( Berendes et al.,

019a ). Such basic systems are easily overwhelmed by heavy rain events

 Berendes et al., 2019b ), which may promote the creation of airborne

ontaminated bioaerosols in which infectious pathogens can remain vi-

ble, as has recently been demonstrated for several enteropathogens,

ncluding viruses ( Ginn et al., 2021 ). 

Soil moisture was included as a negative control exposure, yet its

bserved effect on R t , though small in absolute terms, was larger than

hat of government policy, population age structure, and natural re-

ion. A possible explanation is that soil moisture serves as a proxy for

he general moisture retention of all surfaces, and that virus particles

xpelled in aerosolized droplets may remain viable for longer if they

ettle on a surface that permits them to retain their surrounding mois-

ure ( Colston, 2018 ). Wind speed was notable for being the only hy-

rometeorological variable with no association with R t among other-

ise uniformly highly statistically significant effects. While there is lit-

le consensus in the published evidence regarding the effects of wind

peed on COVID-19 transmission — several studies have reported in-

erse effects ( Ganslmeier et al., 2021 ; Yuan et al., 2021 ), while others

ave reported direct ( Ledebur et al., 2022 ; Majumder and Ray, 2021 ;

arkodie and Owusu, 2020 ) or negligible associations ( Yin et al., 2022 )

this finding was unexpected. It seems otherwise highly plausible that

aster wind speeds might suppress transmission of SARS-CoV-2 in out-

oor environments by increasing air circulation and dispersing infective

erosols away from susceptible individuals, much as ventilation does in

ndoor environments ( Clouston et al., 2021 ; Senatore et al., 2021 ). In-

eed, in an otherwise identical unadjusted (single variable) model, a

mall, inverse effect of wind speed above a threshold high in the distri-

ution was identified, consistent with that identified by Clouston and

olleagues ( Clouston et al., 2021 ) (Supplementary Figure S2). 

The modeled effects of several non-hydrometeorological variables

ere consistent with the a priori hypotheses justifying their inclusion.

ransmission was highest in densely populated districts, presumably due

o higher contact rates, and lowest in districts with shorter travel time to
38 
ealth facilities, perhaps due to improved access to diagnosis and case

anagement shortening the period between disease onset and isolation,

r to unresolved confounding by latent urban status. On days in which

ime spent in residences was at least 10% more than was typical before

he pandemic (a proxy for lockdown compliance), R t was statistically

ignificantly reduced, though by less than 1% and not to a level below 1,

hich if sustained would eventually bring transmission under control.

he proportion of the population that was elderly had no substantial

mpact on R t , likely because old age is less of a risk factor for infectious-

ess or susceptibility to infection than it is for more severe COVID-19

utcomes once infected. It is striking that greater government response

tringency had no effect on reducing R t , and even appeared to increase

t slightly in the upper extreme. This may reflect how government re-

ponse is often slow and largely reactive to surges in cases, or that it

as little impact over and above that which is mediated by individual

ehavior change and compliance — factors captured by the mobility

ariable. 

This analysis was subject to certain limitations, in addition to those

nherent to unit-level, ecological studies. The effect size estimates and

roportions of variance in the outcomes explained by this model were

maller than those reported in other comparable analyses, in some cases

y almost an order of magnitude ( Sera et al., 2021 ; Ma et al., 2020 ).

or example, in their analysis of the first wave of the pandemic in six

orth American and western European countries, Landier et al. found

redicted R t values ranging from around 3.6 to 2.2 at the two extremes

f the humidity distribution ( Landier et al., 2021 ), while the equivalent

ange in Nottmeyer et al.’s multi-city analysis was around 1.55 to 0.8

 Nottmeyer et al., 2023 ), compared with the 1.04 to 1.0 found here. Ma

t al. found 17.5% of R t variation in US counties to be attributable to

hree meteorological factors ( Ma et al., 2021 ), compared with the 2.3%

xplained by six such factors in our analysis. There are several interre-

ated explanations for this. Firstly, we deliberately excluded from the

ime series the first wave of the pandemic during which transmission

as highest and most unstable, which resulted in a narrower range of

 t values, in line with evidence that the metric tends to center around

 value of approximately 1 in most settings ( Abbott et al., 2020 ). Sec-

ndly, the high level of geographical disaggregation meant that there

as a large number of unit-days on which zero cases were reported or

hat had uninterpretable R t values. This also narrowed the distribution

f outcome values, with an inflated number of observations close to

, even after applying the exclusions (Supplementary Figure S3a and

). Given that environmental conditions vary on a very small scale and

hat case data were available at such high resolution, this was deemed a

ustifiable tradeoff. In a sensitivity analysis, the exclusion criteria were

ightened such that unit-days with fewer than five cases (as opposed

o zero) and an R t of between 0.95 and 1.05 were excluded. This fur-

her reduced the centralization of the distribution around the value of

 (Supplementary Figure S3c), making it more Gaussian still, and led

o effects of larger magnitude (Supplementary Figure S4 — note the

hange in y -axis scale) and an increase in explanatory power to 6.6%,

hen the model was refitted to the further restricted data and com-

ared with the main results. This suggests that a lack of variability in

he outcome partly explained the modest findings of this analysis. Lastly,

imited variability in the exposures may also have played a role, since

ocations within this equatorial domain experience less changeable hy-

rometeorological conditions than other regions that have been exam-

ned. Supplementary Table S2 compares the average within-unit means

nd standard deviations of three such variables in the US county-level

ataset used by Ma and colleagues ( Ma et al., 2021 ) and the one used

n our study over the same time period. While the average values were

omparable, for all three variables, the location-specific variation (as

easured by the within-unit standard deviation in the average) was con-

iderably greater in the US dataset, which yielded larger effect sizes and

eather-attributable R t variability ( Ma et al., 2021 ). 

In conclusion, COVID-19 transmission is sensitive to spatiotempo-

ally varying hydrometeorological conditions in these three countries
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f tropical Andean South America, even after adjusting for other po-

ential confounders, including both static and time-varying variables,

nd at multiple cross-cutting scales. Dry atmospheric conditions of low

umidity increased district-level SARS-CoV-2 reproduction numbers,

hile higher solar radiation decreased them. While several commen-

ators have cautioned that the effects on transmission of climatological

onditions are likely to be modest compared with factors such as NPI

ompliance ( Carleton et al., 2021 ; Smit et al., 2020 ), these findings in

act show their influence to be of a comparable magnitude in several

ases, and even greater than that of government response and popu-

ation age structure. However, in absolute terms these effects, though

ignificant, are modest and do not explain the excess disease burden

xperienced in some parts of this region during the first wave of the

andemic. 

As SARS-CoV-2 settles into indefinite endemic circulation, it may be

easible to incorporate weather monitoring into disease surveillance and

arly warning systems alongside other more costly activities, such as

astewater or population seroprevalence surveillance, for anticipating

ase surges and allocating resources. Furthermore, population health in-

erventions that encourage the public to exercise greater precautions on

loudy or dry days could also be considered. However, the high propor-

ion of variance in COVID-19 transmission that remains unexplained,

ven after accounting for population factors and NPIs ( > 96%), is strik-

ng, as are the negligible relative effect sizes of < 2%, which are far

urpassed by those of interventions such as vaccination (53–94% —

ndrews et al., 2022 ) and mask wearing (19% — Leech et al., 2022 ), all

f which should serve as cause for caution when attempting to predict

ear-term changes in transmission risk. 

uthor contributions 

JMC, MNK, and BFZ conceived the study. MNK and BFZ secured

unding for the research. JMC, PH, NHN, YTC, HB, and DNM carried

ut data processing, analysis, and visualization. MNK and AQ provided

nitial data. GHK, LMG, AQ, and FSS provided interpretation and writing

upport. 

eclaration of Competing Interest 

All authors declare no conflicts of interest or competing financial

nterests. 

cknowledgements 

The authors are grateful to Ecuacovid, a project that provides a set

f raw data extracted from reports on the national COVID-19 situa-

ion from Ecuadorian health authorities. https://github.com/andrab/

cuacovid . 

ata availability 

The data and R code used in this analysis are provided as supple-

entary materials. 

unding sources 

The research presented in this article was supported financially by

 COVID-19 supplement to NASA’s Group on Earth Observations Work

rogramme (16-GEO16-0047), to Drs Zaitchik and Kosek. Additional

unding was obtained from the Centers for Disease Control and Preven-

ion (U01GH002270) to Dr Kosek. The funders played no role in the

tudy design, the collection, analysis, and interpretation of data, the

riting of the report, or the decision to submit the paper for publica-

ion. The findings and conclusions of this report are those of the authors

nd do not necessarily represent the official position of the funders. 
39 
thical approval statement 

There was no primary human or animal subject information used

n the research, since the data were compiled entirely from publicly

vailable secondary sources. Therefore, ethical approval was not sought.

ll data sources are properly attributed and cited. 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.ijregi.2022.11.007 . 

eferences 

bbott S, Hellewell J, Thompson RN, Sherratt K, Gibbs HP, Bosse NI, et al. Estimating

the time-varying reproduction number of SARS-CoV-2 using national and subnational

case counts. Wellcome Open Research 2020;5:112. doi: 10.12688/wellcomeopen-

res.16006.1 . 

hlawat A, Wiedensohler A, Mishra SK. An overview on the role of relative humidity in

airborne transmission of SARS-CoV-2 in indoor environments. Aerosol Air Qual Res

2020;20:1856–61. doi: 10.4209/aaqr.2020.06.0302 . 

obalino Andrés N, Oporto Carlos, Hurtado Francisco. Serge Bibauw. Ecuacovid; 2021 . 

ndrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, et al. Duration of pro-

tection against mild and severe disease by Covid-19 vaccines. New England Journal

of Medicine 2022;386:340–50. doi: 10.1056/NEJMoa2115481 . 

udi A, AlIbrahim M, Kaddoura M, Hijazi G, Yassine HM, Zaraket H. Seasonality of

respiratory viral infections: will COVID-19 follow suit? Frontiers in Public Health

2020;8:576. doi: 10.3389/fpubh.2020.567184 . 

adr HS, Zaitchik BF, Kerr GH, Nguyen N-LH, Chen Y-T, Hinson P, et al. Unified real-time

environmental-epidemiological data for multiscale modeling of the COVID-19 pan-

demic. MedRxiv 2021:2021.05.05.21256712. doi: 10.1101/2021.05.05.21256712 . 

arber RM, Sorensen RJD, Pigott DM, Bisignano C, Carter A, Amlag JO, et al.

Estimating global, regional, and national daily and cumulative infections with

SARS-CoV-2 through Nov 14, 2021: a statistical analysis. The Lancet 2022.

doi: 10.1016/S0140-6736(22)00484-6 . 

erendes DM, Leon JS, Kirby AE, Clennon JA, Raj SJ, Yakubu H, et al. Associations be-

tween open drain flooding and pediatric enteric infections in the MAL-ED cohort in a

low-income, urban neighborhood in Vellore, India. BMC Public Health 2019a;19:926.

doi: 10.1186/s12889-019-7268-1 . 

erendes DM, de Mondesert L, Kirby AE, Yakubu H, Adomako Lady, Michiel J, et al.

Variation in E. coli concentrations in open drains across neighborhoods in Accra,

Ghana: the influence of onsite sanitation coverage and interconnectedness of urban

environments. Int j Hyg Environ Health 2019b;224 –0 . 

arleton T, Cornetet J, Huybers P, Meng KC, Proctor J. Global evidence for ultraviolet

radiation decreasing COVID-19 growth rates. Proc Natl Acad Sci U S A 2021;118.

doi: 10.1073/pnas.2012370118 . 

arlson CJ, Gomez ACR, Bansal S, Ryan SJ. Misconceptions about weather and

seasonality must not misguide COVID-19 response. Nat Commun 2020;11:4312.

doi: 10.1038/s41467-020-18150-z . 

enter for International Earth Science Information Network (CIESIN). Gridded Population

of the World, Version 4 (GPWv4). Population Count; 2016 . 

enter for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU).

COVID-19 Dashboard. Johns Hopkins University & Medicine Coronavirus Resource

Center 2021 https://coronavirus.jhu.edu/map.html . (accessed October 12, 2021) . 

hen S, Prettner K, Kuhn M, Geldsetzer P, Wang C, Bärnighausen T, et al. Climate and the

spread of COVID-19. Sci Rep 2021;11:9042. doi: 10.1038/s41598-021-87692-z . 

louston SAP, Morozova O, Meliker JR. A wind speed threshold for increased out-

door transmission of coronavirus: an ecological study. BMC Infectious Diseases

2021;21:1194. doi: 10.1186/s12879-021-06796-z . 

olston JM. Seasonality and hydrometeorological predictors of rotavirus infection in an

eight-site birth cohort study: implications for modeling and predicting pathogen-spe-

cific enteric disease burden. Johns Hopkins University; 2018 . 

olston JM, Ahmed T, Mahopo C, Kang G, Kosek M, de Sousa Junior F, et al.

Evaluating meteorological data from weather stations, and from satellites and

global models for a multi-site epidemiological study. Environ Res 2018;165:91–109.

doi: 10.1016/j.envres.2018.02.027 . 

olston JM, Zaitchik B, Kang G, Peñataro Yori P, Ahmed T, Lima A, et al. Use of earth

observation-derived hydrometeorological variables to model and predict rotavirus in-

fection (MAL-ED): a multisite cohort study. Lancet Planet Health 2019;3:e248–58.

doi: 10.1016/S2542-5196(19)30084-1 . 

olston JM, Zaitchik BF, Badr HS, Burnett E, Ali SA, Rayamajhi A, et al. Associations

between eight earth observation-derived climate variables and enteropathogen infec-

tion: an independent participant data meta-analysis of surveillance studies with broad

spectrum nucleic acid diagnostics. Geohealth 2022;6. doi: 10.1029/2021GH000452 . 

abisch P, Schuit M, Herzog A, Beck K, Wood S, Krause M, et al. The in-

fluence of temperature, humidity, and simulated sunlight on the infectivity

of SARS-CoV-2 in aerosols. Aerosol Science and Technology 2021;55:142–53.

doi: 10.1080/02786826.2020.1829536 . 

ong E, Du H, Gardner L. An interactive web-based dashboard to track

COVID-19 in real time. The Lancet Infectious Diseases 2020;20:533–4.

doi: 10.1016/S1473-3099(20)30120-1 . 

SRI. ArcGIS Desktop: Release 10.8 2019. 

https://github.com/andrab/ecuacovid
https://doi.org/10.1016/j.ijregi.2022.11.007
https://doi.org/10.12688/wellcomeopenres.16006.1
https://doi.org/10.4209/aaqr.2020.06.0302
http://refhub.elsevier.com/S2772-7076(22)00140-0/sbref0003
https://doi.org/10.1056/NEJMoa2115481
https://doi.org/10.3389/fpubh.2020.567184
https://doi.org/10.1101/2021.05.05.21256712
https://doi.org/10.1016/S0140-6736(22)00484-6
https://doi.org/10.1186/s12889-019-7268-1
http://refhub.elsevier.com/S2772-7076(22)00140-0/sbref0009
https://doi.org/10.1073/pnas.2012370118
https://doi.org/10.1038/s41467-020-18150-z
http://refhub.elsevier.com/S2772-7076(22)00140-0/sbref0012
https://coronavirus.jhu.edu/map.html
https://doi.org/10.1038/s41598-021-87692-z
https://doi.org/10.1186/s12879-021-06796-z
http://refhub.elsevier.com/S2772-7076(22)00140-0/sbref0016
https://doi.org/10.1016/j.envres.2018.02.027
https://doi.org/10.1016/S2542-5196(19)30084-1
https://doi.org/10.1029/2021GH000452
https://doi.org/10.1080/02786826.2020.1829536
https://doi.org/10.1016/S1473-3099(20)30120-1


J.M. Colston, P. Hinson, N.H. Nguyen et al. IJID Regions 6 (2023) 29–41 

F  

 

F  

 

 

G  

G  

 

G

H  

 

H  

 

H  

 

H  

I  

I  

 

I  

 

K  

 

K  

 

 

K  

 

K  

 

L  

 

 

L  

 

 

L  

 

L  

 

L  

 

M  

 

M  

 

M  

 

 

M  

M  

 

M  

 

M  

 

M  

 

 

M  

 

 

M  

 

N  

 

 

O  

 

O  

 

P  

 

 

Q  

 

R

R  

 

R  

 

R  

 

R  

 

 

S  

 

S  

 

S  

 

S  

 

 

S  

 

S  

 

S  

 

S  

 

 

S  

 

 

S  

S

T  

 

T  

T  

 

T  

L  
ernandes JSC, da Silva RS, Silva AC, Villela DC, Mendonça VA, Lacerda ACR. Alti-

tude conditions seem to determine the evolution of COVID-19 in Brazil. Sci Rep

2021;11:4402. doi: 10.1038/s41598-021-83971-x . 

rench MA, Fiona Barker S, Taruc RR, Ansariadi A, Duffy GA, Saifuddaolah M, et al. A plan-

etary health model for reducing exposure to faecal contamination in urban informal

settlements: baseline findings from Makassar. Indonesia. Environment International

2021;155. doi: 10.1016/j.envint.2021.106679 . 

anslmeier M, Furceri D, Ostry JD. The impact of weather on COVID-19 pandemic. Sci

Rep 2021;11:22027. doi: 10.1038/s41598-021-01189-3 . 

inn O, Rocha-Melogno L, Bivins A, Lowry S, Cardelino M, Nichols D, et al. Detection and

quantification of enteric pathogens in aerosols near open wastewater canals in cities

with poor sanitation. Environ Sci Technol 2021. doi: 10.1021/acs.est.1c05060 . 

oogle LLC. Google COVID-19 Community Mobility Reports. 2022. 

ale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel

database of pandemic policies (Oxford COVID-19 Government Response Tracker). Na-

ture Human Behaviour 2021;5:529–38. doi: 10.1038/s41562-021-01079-8 . 

aug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al. Ranking

the effectiveness of worldwide COVID-19 government interventions. Nature Human

Behaviour 2020;4:1303–12. doi: 10.1038/s41562-020-01009-0 . 

ersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, et al.

The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society

2020;146:1999–2049. doi: 10.1002/qj.3803 . 

osseini V. SARS-CoV-2 virulence: interplay of floating virus-laden particles, climate, and

humans. Advanced Biosystems 2020;4. doi: 10.1002/adbi.202000105 . 

nstituto Nacional de Estadística e Informática (INEI) and ICF International. Perú Encuesta

Demográfica y de Salud Familiar - ENDES 2012. Lima, April 1, 2013. 

nstituto Geografico Agustin Codazzi. Natural regions of Colombia. Geoportal

2014 http://geoportal.igac.gov.co/mapas _ de _ colombia/IGAC/Tematicos2012/

RegionesGeograficas.pdf. (accessed October 12, 2021) . 

nstituto Nacional de Salud Colombiano. Casos positivos de COVID-19 en Colombia. Datos

Abiertos Colombia 2021. https://www.datos.gov.co/en/Salud- y- Protecci- n- Social/

Casos- positivos- de- COVID- 19- en- Colombia/gt2j- 8ykr (accessed October 12, 2021) 

aria R, Gupta I, Khandait H, Ashima Yadav, Anmol Yadav. COVID-19 and its

modes of transmission. SN Comprehensive Clinical Medicine 2020;2:1798–801.

doi: 10.1007/s42399-020-00498-4 . 

err GH, Badr HS, Barbieri A, Colston JM, Gardner LM, Kosek MN, et al. Evolving drivers

of Brazilian SARS-CoV-2 transmission: a spatiotemporally disaggregated time se-

ries analysis of meteorology, policy, and human mobility, 2022. doi: 10.1002/essoar.

10512574.1 . 

err GH, Badr HS, Gardner LM, Perez-Saez J, Zaitchik BF. Associations between meteo-

rology and COVID-19 in early studies: inconsistencies, uncertainties, and recommen-

dations. One Health 2021;12. doi: 10.1016/j.onehlt.2021.100225 . 

umar P, Morawska L. Could fighting airborne transmission be the next line of

defence against COVID-19 spread? City and Environment Interactions 2019;4.

doi: 10.1016/j.cacint.2020.100033 . 

andier J, Paireau J, Rebaudet S, Legendre E, Lehot L, Fontanet A, et al. Cold and dry

winter conditions are associated with greater SARS-CoV-2 transmission at regional

level in western countries during the first epidemic wave. Sci Rep 2021;11:12756.

doi: 10.1038/s41598-021-91798-9 . 

edebur K, Kaleta M, Chen J, Lindner SD, Matzhold C, Weidle F, et al. Meteorolog-

ical factors and non-pharmaceutical interventions explain local differences in the

spread of SARS-CoV-2 in Austria. PLoS Comput Biol 2022;18. doi: 10.1371/jour-

nal.pcbi.1009973 . 

eech G, Rogers-Smith C, Monrad JT, Sandbrink JB, Snodin B, Zinkov R, et al. Mask wear-

ing in community settings reduces SARS-CoV-2 transmission. Proceedings of the Na-

tional Academy of Sciences 2022;119. doi: 10.1073/pnas.2119266119 . 

in K, Marr LC. Humidity-dependent decay of viruses, but not bacteria, in aerosols

and droplets follows disinfection kinetics. Environ Sci Technol 2020;54:1024–32.

doi: 10.1021/acs.est.9b04959 . 

orenzo JSL, Tam WWS, Seow WJ. Association between air quality, meteorological

factors and COVID-19 infection case numbers. Environmental Research 2021;197.

doi: 10.1016/j.envres.2021.111024 . 

a Y, Pei S, Shaman J, Dubrow R, Chen K. Role of air temperature and humidity in the

transmission of SARS-CoV-2 in the United States. MedRxiv: The Preprint Server for

Health Sciences 2020. doi: 10.1101/2020.11.13.20231472 . 

a Y, Pei S, Shaman J, Dubrow R, Chen K. Role of meteorological factors in the

transmission of SARS-CoV-2 in the United States. Nat Commun 2021;12:3602.

doi: 10.1038/s41467-021-23866-7 . 

acLean OA, Lytras S, Weaver S, Singer JB, Boni MF, Lemey P, et al. Natural se-

lection in the evolution of SARS-CoV-2 in bats created a generalist virus and

highly capable human pathogen. PLOS Biology 2021;19. doi: 10.1371/journal.pbio.

3001115 . 

ajumder P, Ray PP. A systematic review and meta-analysis on correlation of weather

with COVID-19. Sci Rep 2021;11:10746. doi: 10.1038/s41598-021-90300-9 . 

ecenas P, Bastos RT da RM, Vallinoto ACR, Normando D. Effects of temperature and

humidity on the spread of COVID-19: a systematic review. PLOS ONE 2020;15.

doi: 10.1371/journal.pone.0238339 . 

eyer A, Sadler R, Faverjon C, Cameron AR, Bannister-Tyrrell M. Evidence that higher

temperatures are associated with a marginally lower incidence of COVID-19 cases.

Front Public Health 2020;8:367. doi: 10.3389/fpubh.2020.00367 . 

inisterio de Salud Peruano. Plataforma Nacional de Datos Abiertos. Plataforma

Nacional de Datos Abiertos 2021. https://www.datosabiertos.gob.pe/

dataset/casos- positivos- por- covid- 19- ministerio- de- salud- minsa/resource/ 

690e57a6- a465- 47d8- 86fd (accessed October 12, 2021) 

orales-Vives F, Dueñas J-M, Ferrando PJ, Vigil-Colet A, Varea MD. COmpliance with pan-

demic COmmands Scale (COCOS): the relationship between compliance with COVID-
40 
19 measures and sociodemographic and attitudinal variables. PLOS ONE 2022;17.

doi: 10.1371/journal.pone.0262698 . 

orris DH, Yinda KC, Gamble A, Rossine FW, Huang Q, Bushmaker T, et al. Mech-

anistic theory predicts the effects of temperature and humidity on inactivation of

SARS-CoV-2 and other enveloped viruses. ELife 2021;10:e65902. doi: 10.7554/eLife.

65902 . 

ueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately

affect older people? Aging (Albany NY) 2020;12:9959–81. doi: 10.18632/aging.

103344 . 

ottmeyer L, Armstrong B, Lowe R, Abbott S, Meakin S, O’Reilly KM, et al. The

association of COVID-19 incidence with temperature, humidity, and UV radia-

tion — a global multi-city analysis. Science of The Total Environment 2023;854.

doi: 10.1016/j.scitotenv.2022.158636 . 

nyeaka H, Anumudu CK, Al-Sharify ZT, Egele-Godswill E, Mbaegbu P. COVID-19 pan-

demic: a review of the global lockdown and its far-reaching effects. Science Progress

2021;104. doi: 10.1177/00368504211019854 . 

’Reilly KM, Auzenbergs M, Jafari Y, Liu Y, Flasche S, Lowe R. Effective transmission

across the globe: the role of climate in COVID-19 mitigation strategies. The Lancet

Planetary Health 2020;4:e172. doi: 10.1016/S2542-5196(20)30106-6 . 

araskevis D, Kostaki EG, Alygizakis N, Thomaidis NS, Cartalis C, Tsiodras S, et al. A

review of the impact of weather and climate variables to COVID-19: in the absence

of public health measures high temperatures cannot probably mitigate outbreaks. Sci

Total Environ 2021;768. doi: 10.1016/j.scitotenv.2020.144578 . 

uintana AV, Clemons M, Hoevemeyer K, Liu A, Balbus J. A descriptive analysis of the sci-

entific literature on meteorological and air quality factors and COVID-19. GeoHealth

2021;5. doi: 10.1029/2020GH000367 . 

 Core Team. R: a language and environment for statistical computing. 2020. 

aiteux J, Eschlimann M, Marangon A, Rogée S, Dadvisard M, Taysse L, et al. Inactiva-

tion of SARS-CoV-2 by simulated sunlight on contaminated surfaces. Microbiol Spectr

2021;9. doi: 10.1128/Spectrum.00333-21 . 

atnesar-Shumate S, Williams G, Green B, Krause M, Holland B, Wood S, et al. Simu-

lated sunlight rapidly inactivates SARS-CoV-2 on surfaces. The Journal of Infectious

Diseases 2020;222:214–22. doi: 10.1093/infdis/jiaa274 . 

ice BL, Annapragada A, Baker RE, Bruijning M, Dotse-Gborgbortsi W, Mensah K,

et al. Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa. Nature Medicine

2021;27:447–53 2021 27:3. doi: 10.1038/s41591-021-01234-8 . 

ubin D, Huang J, Fisher BT, Gasparrini A, Tam V, Song L, et al. Association of social

distancing, population density, and temperature with the instantaneous reproduction

number of SARS-CoV-2 in counties across the United States. JAMA Netw Open 2020;3.

doi: 10.1001/jamanetworkopen.2020.16099 . 

ajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Tem-

perature and latitude analysis to predict potential spread and seasonality for COVID-

19. SSRN Electronic Journal 2020. doi: 10.2139/ssrn.3550308 . 

anderson E, Macdonald-Wallis C, Davey Smith G. Negative control exposure studies in the

presence of measurement error: implications for attempted effect estimate calibration.

Int J Epidemiol 2018;47:587–96. doi: 10.1093/ije/dyx213 . 

arkodie SA, Owusu PA. Impact of meteorological factors on COVID-19 pandemic: evi-

dence from top 20 countries with confirmed cases. Environmental Research 2020;191.

doi: 10.1016/j.envres.2020.110101 . 

enatore V, Zarra T, Buonerba A, Choo K-H, Hasan SW, Korshin G, et al. Indoor ver-

sus outdoor transmission of SARS-COV-2: environmental factors in virus spread

and underestimated sources of risk. EuroMediterr J Environ Integr 2021;6:30.

doi: 10.1007/s41207-021-00243-w . 

era F, Armstrong B, Abbott S, Meakin S, O’Reilly K, von Borries R, et al. A cross-sectional

analysis of meteorological factors and SARS-CoV-2 transmission in 409 cities across

26 countries. Nat Commun 2021;12:5968. doi: 10.1038/s41467-021-25914-8 . 

henoy A, Sharma B, Xu G, Kapoor R, Rho HA, Sangha K. God is in the rain: the im-

pact of rainfall-induced early social distancing on COVID-19 outbreaks. J Health Econ

2022;81. doi: 10.1016/j.jhealeco.2021.102575 . 

loan A, Cutts T, Griffin BD, Kasloff S, Schiffman Z, Chan M, et al. Simulated sunlight de-

creases the viability of SARS-CoV-2 in mucus. PLOS ONE 2021;16. doi: 10.1371/jour-

nal.pone.0253068 . 

mit AJ, Fitchett JM, Engelbrecht FA, Scholes RJ, Dzhivhuho G, Sweijd NA. Winter is

coming: a southern hemisphere perspective of the environmental drivers of SARS-

CoV-2 and the potential seasonality of COVID-19. Int J Environ Res Public Health

2020;17:E5634. doi: 10.3390/ijerph17165634 . 

mith TP, Flaxman S, Gallinat AS, Kinosian SP, Stemkovski M, Unwin HJT, et al. Tem-

perature and population density influence SARS-CoV-2 transmission in the absence of

nonpharmaceutical interventions. Proceedings of the National Academy of Sciences

2021;118. doi: 10.1073/PNAS.2019284118 . 

orci G, Faivre B, Morand S. Explaining among-country variation in COVID-19 case fatality

rate. Sci Rep 2020;10:18909. doi: 10.1038/s41598-020-75848-2 . 

tataCorp. Stata Statistical Software: Release 16, 2019. 

arek M, Brissette FP, Arsenault R. Evaluation of the ERA5 reanalysis as a potential ref-

erence dataset for hydrological modelling over. North America. Hydrology and Earth

System Sciences 2020;24:2527–44. doi: 10.5194/hess-24-2527-2020 . 

atem AJ. WorldPop, open data for spatial demography. Scientific Data 2017;4.

doi: 10.1038/sdata.2017.4 . 

elenti A, Arvin A, Corey L, Corti D, Diamond MS, García-Sastre A, et al. After the pan-

demic: perspectives on the future trajectory of COVID-19. Nature 2021;596:495–504.

doi: 10.1038/s41586-021-03792-w . 

emmam S, Vongphayloth K, Baquero E, Munier S, Bonomi M, Regnault B, et al. Bat coron-

aviruses related to SARS-CoV-2 and infectious for human cells. Nature 2022;604:330–

6. doi: 10.1038/s41586-022-04532-4 . 

ancet The. COVID-19 in Latin America: a humanitarian crisis. The Lancet 2020;396:1463.

doi: 10.1016/S0140-6736(20)32328-X . 

https://doi.org/10.1038/s41598-021-83971-x
https://doi.org/10.1016/j.envint.2021.106679
https://doi.org/10.1038/s41598-021-01189-3
https://doi.org/10.1021/acs.est.1c05060
https://doi.org/10.1038/s41562-021-01079-8
https://doi.org/10.1038/s41562-020-01009-0
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/adbi.202000105
http://geoportal.igac.gov.co/mapas_de_colombia/IGAC/Tematicos2012/RegionesGeograficas.pdf
https://www.datos.gov.co/en/Salud-y-Protecci-n-Social/Casos-positivos-de-COVID-19-en-Colombia/gt2j-8ykr
https://doi.org/10.1007/s42399-020-00498-4
https://doi.org/10.1002/essoar.10512574.1
https://doi.org/10.1016/j.onehlt.2021.100225
https://doi.org/10.1016/j.cacint.2020.100033
https://doi.org/10.1038/s41598-021-91798-9
https://doi.org/10.1371/journal.pcbi.1009973
https://doi.org/10.1073/pnas.2119266119
https://doi.org/10.1021/acs.est.9b04959
https://doi.org/10.1016/j.envres.2021.111024
https://doi.org/10.1101/2020.11.13.20231472
https://doi.org/10.1038/s41467-021-23866-7
https://doi.org/10.1371/journal.pbio.\penalty -\@M 3001115
https://doi.org/10.1038/s41598-021-90300-9
https://doi.org/10.1371/journal.pone.0238339
https://doi.org/10.3389/fpubh.2020.00367
https://www.datosabiertos.gob.pe/dataset/casos-positivos-por-covid-19-ministerio-de-salud-minsa/resource/690e57a6-a465-47d8-86fd
https://doi.org/10.1371/journal.pone.0262698
https://doi.org/10.7554/eLife.\penalty -\@M 65902
https://doi.org/10.18632/aging.\penalty -\@M 103344
https://doi.org/10.1016/j.scitotenv.2022.158636
https://doi.org/10.1177/00368504211019854
https://doi.org/10.1016/S2542-5196(20)30106-6
https://doi.org/10.1016/j.scitotenv.2020.144578
https://doi.org/10.1029/2020GH000367
https://doi.org/10.1128/Spectrum.00333-21
https://doi.org/10.1093/infdis/jiaa274
https://doi.org/10.1038/s41591-021-01234-8
https://doi.org/10.1001/jamanetworkopen.2020.16099
https://doi.org/10.2139/ssrn.3550308
https://doi.org/10.1093/ije/dyx213
https://doi.org/10.1016/j.envres.2020.110101
https://doi.org/10.1007/s41207-021-00243-w
https://doi.org/10.1038/s41467-021-25914-8
https://doi.org/10.1016/j.jhealeco.2021.102575
https://doi.org/10.1371/journal.pone.0253068
https://doi.org/10.3390/ijerph17165634
https://doi.org/10.1073/PNAS.2019284118
https://doi.org/10.1038/s41598-020-75848-2
https://doi.org/10.5194/hess-24-2527-2020
https://doi.org/10.1038/sdata.2017.4
https://doi.org/10.1038/s41586-021-03792-w
https://doi.org/10.1038/s41586-022-04532-4
https://doi.org/10.1016/S0140-6736(20)32328-X


J.M. Colston, P. Hinson, N.H. Nguyen et al. IJID Regions 6 (2023) 29–41 

T

 

U  

 

 

W  

 

W  

W  

 

W  

 

X  

 

 

 

Y  

Y  

 

Z  

 

Z  

 

his is Ecuador. Ecuador y sus 4 regiones: Descubre su geografía. This isEcuador —

the most complete guide to Ecuador 2021. https://www.thisisecuador.com/blog/

ecuador- y- sus- 4- regiones- descubre- su- geografia/ (accessed October 12, 2021) 

ddin S, Imam T, Khushi M, Khan A, Ali M. How did socio-demographic status and

personal attributes influence compliance to COVID-19 preventive behaviours during

the early outbreak in Japan? Lessons for pandemic management. Pers Individ Dif

2021;175. doi: 10.1016/j.paid.2021.110692 . 

ahltinez O, Cheung A, Alcantara R, Cheung D, Daswani M, Erlinger A, et al. COVID-19

Open-Data: a global-scale spatially granular meta-dataset for coronavirus disease. Sci

Data 2022;9:162. doi: 10.1038/s41597-022-01263-z . 

ang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health

concern. The Lancet 2020;395:470–3. doi: 10.1016/S0140-6736(20)30185-9 . 

ang H, Paulson KR, Pease SA, Watson S, Comfort H, Zheng P, et al. Estimating excess

mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related

mortality, 2020–21. The Lancet 2022;0. doi: 10.1016/S0140-6736(21)02796-3 . 

eiss DJ, Nelson A, Vargas-Ruiz CA, Gligori ć K, Bavadekar S, Gabrilovich E, et al.

Global maps of travel time to healthcare facilities. Nature Medicine 2020;26:1835–8.

doi: 10.1038/s41591-020-1059-1 . 
41 
ia Y, Mitchell K, Ek M, Sheffield J, Cosgrove B, Wood EF, et al. Continental-scale wa-

ter and energy flux analysis and validation for the North American Land Data As-

similation System project phase 2 (NLDAS-2): 1. Intercomparison and application

of model products. Journal of Geophysical Research Atmospheres 2012;117:D03109.

doi: 10.1029/2011JD016048 . 

in C, Zhao W, Pereira P. Meteorological factors’ effects on COVID-19 show seasonality

and spatiality in Brazil. Environ Res 2022;208. doi: 10.1016/j.envres.2022.112690 . 

uan J, Wu Y, Jing W, Liu J, Du M, Wang Y, et al. Association between meteorological

factors and daily new cases of COVID-19 in 188 countries: a time series analysis. Sci

Total Environ 2021;780. doi: 10.1016/j.scitotenv.2021.146538 . 

aitchik BF, Sweijd N, Shumake-Guillemot J, Morse A, Gordon C, Marty A, et al.

A framework for research linking weather, climate and COVID-19. Nat Commun

2020;11:5730. doi: 10.1038/s41467-020-19546-7 . 

hang R, Li Y, Zhang AL, Wang Y, Molina MJ. Identifying airborne transmission as the

dominant route for the spread of COVID-19. Proceedings of the National Academy of

Sciences 2020;117:14857–63. doi: 10.1073/pnas.2009637117 . 

https://www.thisisecuador.com/blog/ecuador-y-sus-4-regiones-descubre-su-geografia/
https://doi.org/10.1016/j.paid.2021.110692
https://doi.org/10.1038/s41597-022-01263-z
https://doi.org/10.1016/S0140-6736(20)30185-9
https://doi.org/10.1016/S0140-6736(21)02796-3
https://doi.org/10.1038/s41591-020-1059-1
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1016/j.envres.2022.112690
https://doi.org/10.1016/j.scitotenv.2021.146538
https://doi.org/10.1038/s41467-020-19546-7
https://doi.org/10.1073/pnas.2009637117

	Effects of hydrometeorological and other factors on SARS-CoV-2 reproduction number in three contiguous countries of tropical Andean South America: a spatiotemporally disaggregated time series analysis
	Introduction
	Methods
	Scope of analysis
	Epidemiological data
	Hydrometeorological data
	Covariate data
	Statistical analysis:

	Results
	Discussion
	Author contributions
	Declaration of Competing Interest
	Acknowledgements
	Data availability
	Funding sources
	Ethical approval statement
	Supplementary materials
	References


